
1. Introduction
1.1. Background

A common starting point for quantifying the sensitivity of the Earth's climate to external perturbations is consid-
eration of the global-mean energy budget, N  =  F  +  λT, where N is the net downward radiative flux at the 
top-of-atmosphere (TOA) (units W m −2), F the effective radiative forcing (ERF, units W m −2), λ the climate 
feedback parameter (units W m −2 K −1, a negative number in this paper, but the opposite convention is also used), 
and T the surface-air-temperature change (units K) relative to an unperturbed steady state in which N = F = 0. 
Applied to non-steady states, such as the Earth's historical record (since the 1800s), λ is determined via either 
(a) differences (denoted by Δ) between two climate states (often present-day and pre-industrial) according to 

Abstract We investigate the dependence of radiative feedback on the pattern of sea-surface temperature 
(SST) change in 14 Atmospheric General Circulation Models (AGCMs) forced with observed variations in 
SST and sea-ice over the historical record from 1871 to near-present. We find that over 1871–1980, the Earth 
warmed with feedbacks largely consistent and strongly correlated with long-term climate sensitivity feedbacks 
(diagnosed from corresponding atmosphere-ocean GCM abrupt-4xCO2 simulations). Post 1980, however, the 
Earth warmed with unusual trends in tropical Pacific SSTs (enhanced warming in the west, cooling in the east) 
and cooling in the Southern Ocean that drove climate feedback to be uncorrelated with—and indicating much 
lower climate sensitivity than—that expected for long-term CO2 increase. We show that these conclusions are 
not strongly dependent on the Atmospheric Model Intercomparison Project (AMIP) II SST data set used to 
force the AGCMs, though the magnitude of feedback post 1980 is generally smaller in nine AGCMs forced 
with alternative HadISST1 SST boundary conditions. We quantify a “pattern effect” (defined as the difference 
between historical and long-term CO2 feedback) equal to 0.48 ± 0.47 [5%–95%] W m −2 K −1 for the time-period 
1871–2010 when the AGCMs are forced with HadISST1 SSTs, or 0.70 ± 0.47 [5%–95%] W m −2 K −1 when 
forced with AMIP II SSTs. Assessed changes in the Earth's historical energy budget agree with the AGCM 
feedback estimates. Furthermore satellite observations of changes in top-of-atmosphere radiative fluxes since 
1985 suggest that the pattern effect was particularly strong over recent decades but may be waning post 2014.

ANDREWS ET AL.

© 2022 Crown copyright. This article 
is published with the permission of the 
Controller of HMSO and the Queen's 
Printer for Scotland.

On the Effect of Historical SST Patterns on Radiative 
Feedback
Timothy Andrews1  , Alejandro Bodas-Salcedo1  , Jonathan M. Gregory1,2  , Yue Dong3,4  , 
Kyle C. Armour3,5  , David Paynter6  , Pu Lin7  , Angshuman Modak8  , 
Thorsten Mauritsen8  , Jason N. S. Cole9, Brian Medeiros10  , James J. Benedict11,12, 
Hervé Douville13  , Romain Roehrig13  , Tsuyoshi Koshiro14  , Hideaki Kawai14  , 
Tomoo Ogura15  , Jean-Louis Dufresne16  , Richard P. Allan17,18  , and Chunlei Liu19 

1Met Office Hadley Centre, Exeter, UK, 2National Centre for Atmospheric Science, University of Reading, Reading, UK, 
3Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA, 4Now at Lamont-Doherty Earth 
Observatory, Columbia University, Palisades, NY, USA, 5School of Oceanography, University of Washington, Seattle, WA, 
USA, 6NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, NJ, USA, 7Program in Atmospheric 
and Oceanic Sciences, Princeton University, Princeton, NJ, USA, 8Department of Meteorology, University of Stockholm, 
Stockholm, Sweden, 9Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, 
Victoria, BC, Canada, 10National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, Boulder, 
CO, USA, 11Rosenstiel School of Marine and Atmospheric Science, University of Miami, Coral Gables, FL, USA, 12Now 
at Los Alamos National Laboratory, Los Alamos, NM, USA, 13CNRM, Université de Toulouse, Météo-France, CNRS, 
Toulouse, France, 14Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan, 15National Institute for 
Environmental Studies, Tsukuba, Japan, 16Laboratoire de Météorologie Dynamique, IPSL, CNRS, Sorbonne Université, École 
Normale Supérieure, PSL Research University, École Polytechnique, Paris, France, 17National Centre for Earth Observation, 
University of Reading, Reading, UK, 18Department of Meteorology, University of Reading, Reading, UK, 19South China Sea 
Institute of Marine Meteorology, Guangdong Ocean University, Zhanjiang, China

Key Points:
•  Post 1980 the Earth warmed with 

feedbacks uncorrelated with—and 
indicating much lower equilibrium 
climate sensitivity than—that 
expected for long-term CO2 increase

•  Satellite observations of changes in 
top-of-atmosphere radiative fluxes 
since 1985 are in agreement with the 
models

•  The pattern effect may be waning 
post 2014

Supporting Information:
Supporting Information may be found in 
the online version of this article.

Correspondence to:
T. Andrews,
timothy.andrews@metoffice.gov.uk

Citation:
Andrews, T., Bodas-Salcedo, A., 
Gregory, J. M., Dong, Y., Armour, 
K. C., Paynter, D., et al. (2022). On 
the effect of historical SST patterns 
on radiative feedback. Journal of 
Geophysical Research: Atmospheres, 
127, e2022JD036675. https://doi.
org/10.1029/2022JD036675

Received 21 FEB 2022
Accepted 10 AUG 2022

10.1029/2022JD036675
RESEARCH ARTICLE

1 of 29

https://orcid.org/0000-0002-8248-8753
https://orcid.org/0000-0002-7890-2536
https://orcid.org/0000-0003-1296-8644
https://orcid.org/0000-0001-6404-3446
https://orcid.org/0000-0002-6833-5179
https://orcid.org/0000-0002-7092-241X
https://orcid.org/0000-0003-2577-6094
https://orcid.org/0000-0002-4406-7288
https://orcid.org/0000-0003-1418-4077
https://orcid.org/0000-0003-2188-4784
https://orcid.org/0000-0002-6074-6467
https://orcid.org/0000-0002-3903-3841
https://orcid.org/0000-0003-2971-7446
https://orcid.org/0000-0001-8959-6012
https://orcid.org/0000-0002-8441-0044
https://orcid.org/0000-0003-4764-9600
https://orcid.org/0000-0003-0264-9447
https://orcid.org/0000-0002-6663-452X
https://doi.org/10.1029/2022JD036675
https://doi.org/10.1029/2022JD036675
https://doi.org/10.1029/2022JD036675
https://doi.org/10.1029/2022JD036675
https://doi.org/10.1029/2022JD036675


Journal of Geophysical Research: Atmospheres

ANDREWS ET AL.

10.1029/2022JD036675

2 of 29

λ = (ΔN − ΔF)/ΔT (e.g., Gregory et al., 2002; Otto et al., 2013; Sherwood et al., 2020), or (b) regression in the 
differential form λ = d(N − F)/dT if the time series of N, F, and T are known (Gregory et al., 2004, 2020).

Until recently it was often assumed that λ was—to a good approximation—a constant property of the climate 
system, such that feedbacks that applied over the historical record also applied to the Earth's long-term response, 
as quantified by the canonical equilibrium climate sensitivity (ECS, units K) to a forcing from a doubling of CO2 
(F2x) over preindustrial levels. Thus, ECS was estimated directly from historical changes in N, T, and F, according 
to ECS = −F2x/λ = −F2x ΔT/(ΔN − ΔF) (e.g., Gregory et al., 2002; Otto et al., 2013, among many others).

However, it is now recognized that λ varies in time since a forcing is applied and with the strength and/or type of 
that forcing (e.g., Andrews et al., 2012, 2015; Armour et al., 2013; Bloch-Johnson et al., 2021; Dong et al., 2020; 
Geoffroy et al., 2013; Gregory et al., 2015; Hansen et al., 2005; Marvel et al., 2016; Richardson et al., 2019; 
Rose et al., 2014; Rugenstein & Armour, 2021; M. A. A. Rugenstein et al., 2016; Senior & Mitchell, 2000). 
Hence, λ is an “effective feedback parameter” that applies only to the climate change over which it was calcu-
lated. More specifically, over the historical record λ is thought to be more stabilizing (more negative, climate 
sensitivity smaller) than might operate in the long-term future, and so λ estimated from historical climate change 
would understate ECS (e.g., Andrews et al., 2018; Armour, 2017; Dong et al., 2021; Gregory & Andrews, 2016; 
Gregory et  al.,  2020; Lewis & Curry,  2018; Marvel et  al.,  2018; Proistosescu & Huybers,  2017; Sherwood 
et al., 2020; Silvers et al., 2018; Zhou et al., 2016).

The reason for the underestimate of long-term ECS is that climate feedbacks setting λ, such as cloud and 
lapse-rate changes, vary with the pattern of surface warming. Proxy reconstructions of past equilibrium climates 
and atmosphere-ocean general circulation model (AOGCM) simulations of long-term climate change show an 
“ENSO-like” temperature pattern with strong temperature changes in the eastern Pacific as well as the South-
ern Ocean, whereas observed historical warming shows more pronounced warming in the western equatorial 
Pacific relative to the tropical mean and cooling in the eastern Pacific and Southern Ocean over recent decades 
(e.g., Andrews et  al.,  2015; Collins et  al.,  2013; Dong et  al.,  2019; Fueglistaler & Silvers, 2021; Gregory & 
Andrews, 2016; Li et al., 2013; Olonscheck et al., 2020; Power et al., 2021; M. Rugenstein et al., 2020; Sherwood 
et al., 2020; Tierney et al., 2019, 2020; Watanabe et al., 2021; Zhou et al., 2016).

Thus, more stabilizing feedbacks have occurred over the historical record because enhanced warming in the west-
ern Pacific warm pool—a region of deep ascent and convection—results in a stronger negative lapse-rate feed-
back widely across the tropics due to efficient warming of the free troposphere, which in turn causes increased 
cloudiness (a negative cloud feedback) in the eastern tropical Pacific due to remotely controlled increased lower 
tropospheric stability. In contrast, less-stabilizing feedbacks are expected in the future as enhanced warming 
in the eastern Pacific—characterized by descending air and marine low cloud decks which are capped under a 
temperature inversion and form over the relatively cool sea-surface-temperatures (SSTs)—results in a positive 
cloud feedback, without an accompanying negative lapse-rate feedback since the warming is “trapped” in the 
boundary layer (e.g., Andrews & Webb, 2018; Ceppi & Gregory, 2017; Dong et al., 2019; Zhou et al., 2016).

The dependence of radiative feedback on the pattern of surface temperature change has been termed a “pattern 
effect” (Stevens et al., 2016), which distinguishes it from other feedback variations that might occur for example, 
as a function of the magnitude of ΔT (e.g., Bloch-Johnson et al., 2021; Block & Mauritsen, 2013; Caballero 
& Huber, 2013). While the term “pattern effect” could be applied to any change in SST pattern and associated 
change in radiative feedback, here we will use it to mean (unless explicitly stated) the pattern effect that arises due 
to the difference in warming pattern between historical climate change and long-term ECS.

Armour (2017) and Andrews et al. (2018) proposed a method to account for the pattern effect in estimates of ECS 
derived from historical climate changes via a modification of the energy budget approach. Their method requires 
an estimate of the difference in feedback, Δλ, due to the pattern effect that arises between historical climate 
change and long-term ECS, so that ECS = −F2x/(λhist + Δλ), where λhist is the historical value. Since Δλ is found 
to be positive, it increases the best estimate of ECS and substantially lifts the upper uncertainty bound, but has 
only a small impact on the lower bound (Andrews et al., 2018; Armour, 2017; Sherwood et al., 2020).

One way of defining the pattern effect, Δλ, is to contrast λhist in an Atmospheric GCM (AGCM) simulation 
forced by observed historical SST and sea-ice variations (termed an amip-piForcing simulation, see Section 2) 
with λ4xCO2 from 150  years of a coupled AOGCM abrupt-4xCO2 simulation with the same AGCM, so that 
Δλ = λ4xCO2 − λhist (Andrews et al., 2018). Hence, our quantification of Δλ not only depends on λhist but also on 
the (somewhat arbitrary) time frame and method used to calculate λ4xCO2. Ideally, we would use the feedback 
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parameter directly associated with ECS rather than λ4xCO2, but this is difficult to calculate in AOGCMs due to 
the millennial timescales required to equilibrate the deep ocean. Hence, feedbacks calculated from 150 years of 
abrupt-4xCO2 are often used as a surrogate for long-term ECS feedbacks (Andrews et al., 2012). Technically 
this is still an “effective feedback parameter” and associated “effective climate sensitivity” (EffCS), rather than 
definitive ECS, but in practice it is found to provide a suitable analog for long-term feedbacks in climate projec-
tions (Grose et al., 2018) and ECS (Sherwood et al., 2020), hence the distinction between EffCS and ECS is not 
considered further (see M. Rugenstein et al. (2020) and Rugenstein and Armour (2021) for further discussion).

We assume other impacts on λ, such as the nature of the forcing agent—so called “efficacies” (Hansen et al., 2005; 
Marvel et al., 2016; Richardson et al., 2019)—primarily occur due to forcing-specific impacts on historical SST 
patterns that will be included in the historical record, rather than any dependence on the actual forcing agent 
concentration in the atmosphere (which will be excluded in our design, because forcing levels are fixed at prein-
dustrial levels in amip-piForcing) (Haugstad et al., 2017). On the other hand, abrupt-4xCO2 experiments contain 
larger warming than the historical record, so any state dependence on T (e.g., Bloch-Johnson et al., 2021; Block & 
Mauritsen, 2013; Caballero & Huber, 2013) might erroneously be diagnosed as a pattern effect using our method. 
Bloch-Johnson et al. (2021) estimated that λ might vary with T by ∼+0.029 W m −2 K −2 (multi-model-mean) in 
step CO2 experiments relative to preindustrial level temperature feedbacks, but with substantial uncertainty in 
both the magnitude and in some cases even the sign of this state dependence (model range −0.14 to 0.109 W 
m −2 K −2). While this may play some role in our diagnosed Δλ, we assume it to be small since both Gregory and 
Andrews (2016) and Andrews and Webb (2018) showed that the pattern effect is large in experiments with iden-
tical T but contrasting historical and abrupt-4xCO2 SST patterns.

The principal advantage of using amip-piForcing simulations in the calculation of the pattern effect is that λhist 
will be consistent with the SST patterns that occurred over the historical record. In contrast, one could use 
AOGCM historical simulations for λhist, but when AOGCMs are free to simulate their own historical SST patterns 
they struggle to reproduce the observed recent decadal trends in tropical Pacific SST patterns (Dong et al., 2021; 
Fueglistaler & Silvers, 2021; Gregory et al., 2020; Watanabe et al., 2021) and the associated magnitude of λhist, 
thus underestimating the pattern effect (Dong et al., 2021; Gregory et al., 2020). This AOGCM bias in the pattern 
effect has important implications, which we return to in the Discussion, but our focus in this manuscript is on the 
historical pattern effect as simulated by AGCMs given the observed SSTs, thus avoiding the issue of AOGCM 
biases in historical SST patterns. Note that while our focus is on the atmospheric response to a given SST pattern, 
causality can work in both directions. For example, cloud feedback has been shown to have an impact on the 
pattern of tropical Pacific SST changes in models (Chalmers et al., 2022).

amip-piForcing simulations also show multi-decadal variations in λhist (Andrews et al., 2018; Dong et al., 2021; 
Fueglistaler & Silvers, 2021; Gregory & Andrews, 2016; Zhou et al., 2016). In particular λhist is generally most 
negative (pattern effect largest) over the most recent decades. This is because variations in atmospheric feed-
back are well explained by changes in SSTs in regions of tropical deep convection relative to the tropical-mean 
(Fueglistaler & Silvers, 2021) or global-mean (Dong et al., 2019). Since the late 1970s, regions of deep convec-
tion have warmed by about +50% more than the tropical-mean (Fueglistaler & Silvers, 2021), and the eastern 
Pacific has cooled despite temperatures increasing globally (e.g., Hartmann et al., 2013; Power et al., 2021; and 
see our Figures 4 and 9). Hence, under this configuration of tropical Pacific SST change, we would expect nega-
tive feedback from the mechanisms described above (e.g., Andrews & Webb, 2018, Ceppi & Gregory, 2017; 
Dong et al., 2019; Zhou et al., 2016).

A limitation of the amip-piForcing experiment for quantifying λhist is that it may include a structural dependence 
on the underlying SST patterns and sea-ice in the Atmospheric Model Intercomparison Project (AMIP) II bound-
ary condition data set (Gates et al., 1999; Hurrell et al., 2008; Taylor et al., 2000) used to force the amip-piForcing 
simulations (Andrews et al., 2018; Fueglistaler & Silvers, 2021; Lewis & Mauritsen, 2021; Zhou et al., 2021). 
Different SST reconstructions have slightly different patterns of SST change over the historical period, and λhist 
may be affected. Indeed Lewis and Mauritsen (2021) and Fueglistaler and Silvers (2021) showed that warming 
in the tropical western Pacific relative to the tropical-mean is less pronounced in other SST data sets, and so we 
might expect less negative feedbacks (Δλ less positive) if the AGCMs were forced with non-AMIP II data sets.

Consistent with this expectation, Andrews et al. (2018) noted that in one AGCM the magnitude of λhist was reduced 
by ∼0.2 W m −2 K −1 when the AMIP II SSTs were replaced by HadISST2.1 SSTs (sea-ice remaining unchanged) 
in an amip-piForcing simulation. Partly because of this, Sherwood et al. (2020) and Forster et al. (2021) assessed 
the historical pattern effect to be smaller and more uncertain (Δλ = 0.5 ± 0.5 W m −2) than simply taking the 
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amip-piForcing based model distribution reported by Andrews et al. (2018) (Δλ = 0.64 ± 0.40 W m −2). Subse-
quently, Lewis and Mauritsen (2021) and Zhou et al. (2021) also found λhist to be less negative (Δλ smaller) when 
using other SST data sets than AMIP II used in amip-piForcing simulations discussed here.

1.2. Aims and Motivating Questions

Andrews et al. (2018) provide much of the published quantitative analysis on λhist to observed SST patterns and 
Δλ, but only six AGCMs from only four different modeling centers were considered. Hence, a first motivation 
of this manuscript is to revisit their numbers with a broader set of models by utilizing the new amip-piForcing 
simulations from the Cloud Feedback Model Intercomparison Project Phase 3 (CFMIP, Webb et al., 2017) contri-
bution to the Coupled Model Intercomparison Project Phase 6 (CMIP6, Eyring et al., 2016). The larger ensemble 
totaling 14 models when combined will provide a more robust quantification of the magnitude and spread of λhist 
and Δλ to a broader set of model physics and climate sensitivities (Flynn & Mauritsen, 2020; Meehl et al., 2020; 
Zelinka et al., 2020).

Second, the limited set of models in Andrews et al. (2018) prevented them from robustly exploring and quanti-
fying the relationship between λhist and λ4xCO2 across models. In other words, it is not known whether feedbacks 
acting over the historical record in AGCMs are correlated to feedbacks acting on long-term ECS. For example, is 
there a relationship between the two that could form the basis of an emergent constraint? Do different parts of the 
historical record relate better to feedbacks acting on long-term ECS than other parts, and why? As we will show, 
feedbacks over different parts of the historical record have different relationships to λ4xCO2, and this is important 
for understanding what can and cannot be directly constrained from the historical record.

Third, λhist and Δλ have been shown to vary substantially on decadal timescales with λhist being most negative 
(pattern effect largest) over recent decades since ∼1980 (Andrews et al., 2018; Dong et al., 2021; Gregory & 
Andrews, 2016; Gregory et al., 2020; Zhou et al., 2016). This is consistent with the findings of Fueglistaler and 
Silvers  (2021), who identified ∼1980 as the point in which the Earth begins to warm with a particular (even 
“peculiar”) configuration of tropical Pacific SSTs where “regions of deep convection warm about +50% more 
than the tropical average” driving large negative cloud feedbacks. Hence, we are motivated to separate λhist and 
Δλ into a “before” and “after” 1980. This separation leads into our next motivating question.

Fourth, are observations of recent decadal warming and TOA radiative fluxes since the 1980s in agreement with 
the strongly negative λ values simulated by the AGCMs? If so, what would such a strongly stabilizing feedback 
parameter (and large pattern effect) in the presence of a substantial rate of observed global warming (∼0.19 K 
dec −1, Tokarska et al., 2020) imply for the efficiency of ocean heat uptake and is there any relationship between 
them? Are any of these relationships affected by the most recent data in which Loeb et al. (2020, 2021) identified 
a marked change in the Earth's radiation budget associated with the 2015/2016 El Niño event and a change in sign 
in the Pacific Decadal Oscillation (PDO) index. Such a shift in tropical Pacific SST patterns (a shift to warming 
in the eastern Pacific) should favor more positive feedbacks (Loeb et al., 2020).

Finally, a limitation of the amip-piForcing approach, as discussed in Section 1.1, is that λhist and Δλ derived 
from these experiments includes a structural dependence on the SST patterns and sea-ice in the AMIP II bound-
ary condition data set used to force the AGCMs (Andrews et al., 2018; Fueglistaler & Silvers, 2021; Lewis & 
Mauritsen, 2021; Zhou et al., 2021). To investigate this further, we supplement the amip-piForcing simulations 
with sensitivity tests with nine AGCMs forced with historical HadISST1 (Rayner et al., 2003) SSTs as per Lewis 
and Mauritsen (2021).

In summary, previous studies have shown that historical climate feedback (λhist) varies on decadal timescales in 
amip-piForcing simulations and is larger in magnitude (climate sensitivity smaller) than that seen in long-term 
abrupt-4xCO2 simulations associated with ECS, giving rise to a “pattern effect.” This is accentuated over recent 
decadal climate change. Here, we make use of observations of the Earth's energy budget from 1985 and a new 
suite of amip-piForcing simulations from CFMIP3/CMIP6 (giving us a combined ensemble of 14 models), as 
well as targeted HadISST1 versus AMIP II SST data set sensitivity tests with nine AGCMs, to address the above 
questions.

The manuscript is organized as follows: Section 2 describes the model and observational data. Section 3 presents 
the model results. Section 4 brings in the observational data. Section 5 presents a summary, discussion, and 
outlook.
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2. Methods and Data
2.1. amip-piForcing

To provide estimates of λhist consistent with the observed variations in SST patterns we turn to AGCMs forced 
with observed monthly variations in SSTs and sea-ice, while keeping all forcing agents such as greenhouse 
gases and aerosols etc. constant at preindustrial levels. Since the radiative forcing is constant (ΔF = dF = 0) 
by construction, λhist can be diagnosed via λhist  =  dN/dT (or ΔN/ΔT if using finite differences between 
climate states) (Andrews, 2014; Andrews et al., 2018; Gregory & Andrews, 2016; Silvers et al., 2018; Zhou 
et al., 2016). Such an experimental design is now referred to as amip-piForcing (Gregory & Andrews, 2016). 
The experimental protocol builds on the Atmospheric Model Intercomparison Project (AMIP) design (Gates 
et al., 1999) that has long been used in climate modeling, but extends back to 1870 (rather than 1979 in AMIP) 
and forcing agents are kept at preindustrial levels. As per AMIP, the underlying SST and sea-ice data set used 
to force the AGCMs is the AMIP II boundary condition data set (Gates et al., 1999; Hurrell et al., 2008; Taylor 
et al., 2000). A description of the amip-piForcing protocol for CFMIP3/CMIP6 is given in Webb et al. (2017). 
When forced with observed monthly SSTs and sea-ice, AGCMs generally reproduce the observed relation-
ships between surface temperature patterns, cloudiness, and radiative fluxes well (Allan et  al.,  2014; Loeb 
et al., 2020), lending some credibility to the radiative effects of their simulated pattern effects to different SST 
patterns.

The amip-piForcing simulations used in this study are summarized in Table 1. They reflect a combination of 
new CFMIP3/CMIP6 simulations with the latest generation of models archived in the CMIP6 database and those 
used in Andrews et al.  (2018) with some updates (see below). The exception is MPI-ESM1-2-LR (Mauritsen 
et al., 2019); this is a CMIP6 generation model but its amip-piForcing simulation is not currently included in the 
CMIP6 database. Note that this model contains the ECHAM6.3 atmospheric model, so the results ought to be 
very similar to the older ECHAM6.3 simulations used in Andrews et al. (2018) and Lewis and Mauritsen (2021), 
though the models are not identical owing to differences in atmospheric composition and land surface properties 

AGCM
Corresponding 
AOGCM name Model description

amip-piForcing hadSST-piForcing

CMIP6? 
(y/n)

Ensemble 
size

Time-period 
covered

Ensemble 
size

Time-period 
covered

CAM4 CCSM4 Neale et al. (2013) n 3 1870–2014 3 1870–2014

CESM2 Unchanged Danabasoglu et al. (2020) y 1 1870–2014 1 1870–2015

CNRM-CM6-1 Unchanged Voldoire et al. (2019) y 1 1870–2014 – –

CanESM5 Unchanged Swart et al. (2019) y 3 1870–2014 – –

ECHAM6.3 MPI-ESM1.1 Mauritsen et al. (2019) n 5 1871–2010 5 1871–2015

GFDL-AM3 GFDL-CM3 Donner et al. (2011) n 1 1870–2014 1 1870–2014

GFDL-AM4 GFDL-CM4 Held et al. (2019) n 1 1870–2016 1 1870–2016

HadAM3 HadCM3 Pope et al. (2000) n 4 1871–2012 4 1871–2012

HadGEM2 HadGEM2-ES Martin et al. (2011) n 4 1871–2012 1 1871–2012

HadGEM3-GC31-LL Unchanged Williams et al. (2017) y 1 1870–2014 1 1871–2016

IPSL-CM6A-LR Unchanged Boucher et al. (2020) y 1 1870–2014 – –

MIROC6 Unchanged Tatebe et al. (2019) y 1 1870–2014 – –

MRI-ESM2-0 Unchanged Yukimoto et al. (2019) and Kawai et al. (2019) y 1 1870–2014 – –

MPI-ESM1-2-LR Unchanged Mauritsen et al. (2019) n 3 1871–2017 3 1871–2017

Note. amip-piForcing refers to an AGCM simulation forced with time-varying observed monthly SSTs and sea-ice using the AMIP II boundary condition SST and 
sea-ice data set, forcing agents such as greenhouse gases, aerosol emission etc. are kept at preindustrial levels. hadSST-piForcing is identical in all aspects except SSTs 
are taken from the HadISST1 database (sea-ice remains the same as amip-piForcing). The ensemble size and time-periods covered for each experiment and AGCM 
is indicated. amip-piForcing simulations included in the CFMIP3 (Webb et al., 2017) contribution to CMIP6 are indicated by a y/n. The corresponding name of each 
AGCMs parent AOGCM is indicated. Global-annual-ensemble-mean dT and dN time series data are available for all amip-piForcing and hadSST-piForcing AGCM 
simulations (see Data Availability Statement Statement).

Table 1 
Summary of the Atmospheric General Circulation Model Simulations Used in This Study
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(see Mauritsen et al., 2019, regarding the transition from MPI-ESM1.1 to MPI-ESM1.2). Furthermore, the newer 
MPI-ESM1-2-LR simulations include a longer time-period than the ECHAM6.3 simulations (Table 1).

The CFMIP3/CMIP6 amip-piForcing simulations begin in year 1870, but we discard the first year to be consistent 
with the earlier Andrews et al. (2018) ensemble which started in January 1871. The CFMIP3/CMIP6 simulations 
end in December 2014, whereas the simulations in the original Andrews et al. (2018) ensemble (largely) ended in 
December 2010. In part to address this, some of the Andrews et al. (2018) simulations have been rerun, including 
CAM4, GFDL-AM3, and GFDL-AM4 simulations, which now end in December 2014 or later (see Table 1). 
Another difference to Andrews et al.  (2018) is that we now have an abrupt-4xCO2 AOGCM simulation with 
GFDL-AM4 which they did not consider, to permit a quantification of the pattern effect in that model. In contrast, 
we exclude the Andrews et al.  (2018) CAM5.3 simulation from our analysis since there is no abrupt-4xCO2 
AOGCM simulation to compare against.

The models used, time-periods covered and number of ensembles are detailed in Table 1. Where ensembles exist, 
an ensemble-mean dT and dN is created before analysis. Note that it makes little difference to λ if, alternatively, 
individual members are first analyzed and then the results ensemble-meaned (Gregory & Andrews, 2016; Lewis 
& Mauritsen, 2021). All models share a common 1871–2010 time-period and so the principal analysis is restricted 
to this time-period, but we consider the additional years to 2014 too. All data are global-annual-ensemble-means 
and expressed as anomalies relative to an 1871–1900 baseline and the time series data has been made available 
(see Data Availability Statement Section).

Unless otherwise stated all uncertainties in multi model ensemble-mean results represent a 5%–95% confidence 
interval, calculated as 1.645σ across models assuming a Gaussian distribution. We do not attempt to adjust our 
uncertainty for the number of independent models, n, used in the ensemble (i.e., dividing by square root of n). 
Our approach is similar to a “statistical indistinguishable ensemble” approach (Annan & Hargraves, 2011, 2017) 
though likely overstates the uncertainty in the true value if the ensemble shares characteristics of a “truth centered 
paradigm” (Sanderson & Knutti, 2012).

2.2. hadSST-piForcing

To test the sensitivity of the amip-piForcing results to the underlying SST data set, we repeat the amip-piForcing 
simulations with nine AGCMs (see Table 1) but replace the AMIP II boundary condition SST data set with 
HadISST1 (Rayner et  al.,  2003). All other aspects of the simulations, including sea-ice, are identical to the 
amip-piForcing simulations. This is the same experimental design as Lewis and Mauritsen  (2021), and we 
include their ECHAM6.3 simulations here (which again ought to be similar to the MPI-ESM1-2-LR simula-
tions). The simulations cover a common time-period across models of 1871–2010, like in amip-piForcing, but 
some models are also extended further (see Table 1). We refer to these simulations as hadSST-piForcing, but note 
only the SSTs are from the HadISST1 data set (hence “hadSST” rather than “hadISST”), the sea-ice remains as 
per amip-piForcing. Like amip-piForcing, all data are global-annual-ensemble-means and expressed as anom-
alies relative to an 1871–1900 baseline, and the time series data has been made available (see Data Availability 
Statement Section).

Lewis and Mauritsen (2021) provide a summary of the source observational inputs used to construct the AMIP 
II and HadISST1 SST data sets and how they differ. In addition, we note that AMIP II uses HadISST1 SSTs 
(Rayner et al., 2003) prior to November 1981 and version 2 of the National Oceanic and Atmospheric Adminis-
tration (NOAA) weekly optimum interpolation (OI.v2) SST analysis (Reynolds et al., 2002) thereafter. The merg-
ing procedure rebases the HadISST1 SSTs to avoid discontinuities in the merged data set (Hurrell et al., 2008). 
Hence, AMIP II and HadISST1 might be expected to be more similar before 1981, and diverge afterward.

2.3. abrupt-4xCO2

A corresponding abrupt-4xCO2 simulation using each AGCM's coupled AOGCM is used to determine the model's 
long-term sensitivity metrics (F4x, λ4xCO2 and ECS = −0.5*F4x/λ4xCO2) from regression of global-annual-mean dN 
against dT over 150 years of the simulations (see Andrews et al., 2012). We also use λ4xCO2 diagnosed from years 
1–20 and years 21–150 of the abrupt-4xCO2 simulation following Andrews et al. (2015), which approximately 
separates the two principal timescales of the climate response: the mixed-layer and deep-ocean (see Andrews 
et al., 2015; Geoffroy et al., 2013). abrupt-4xCO2 data is available on the CMIP5 database (Taylor et al., 2012) 
for CCSM4, GFDL-CM3, and HadGEM2-ES. All other abrupt-4xCO2 data is available on the CMIP6 database 
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(Eyring et  al.,  2016), except for HadCM3 and MPI-ESM1.1. For ECHAM6.3/MPI-ESM1.1, abrupt-4xCO2 
global-annual mean dN and dT time series data are provided by Andrews et al. (2018). HadAM3 data is taken 
from Andrews et al. (2018) and Andrews et al. (2015); while a mean of seven realizations, this simulation is only 
100 years long so the calculations are over years 1–100 for λ4xCO2 and years 1–20 or 21–100 for the separation of 
timescales in this model.

Note when aligning each AGCM to its AOGCM, sometimes the AGCM and AOGCM model names differ in 
the literature. We indicate where this is applicable in Table 1. This does not apply to the newer CFMIP3/CMIP6 
simulations which publish their AGCM and AOGCM simulations under consistent names.

2.4. Observations of Recent Decadal Climate Change

To understand Earth's recent decadal climate change since ∼1985 we turn to its observed global-mean energy 
budget (i.e., dT, dN, and dF). For dT we use the HadCRUT5 analysis data set (Morice et al., 2021) (the current 
version is HadCRUT.5.0.1.0). This is an improvement on previous HadCRUT products and extends coverage in 
data sparse regions (see Morice et al., 2021). For dF we use the best estimate historical ERF time series produced 
by IPCC AR6 (Forster et al., 2021; C. Smith et al., 2021). For dN we use various versions of the DEEP-C satellite 
based reconstruction of the Earth's radiation balance from 1985 to near-present. These are described in detail in 
Allan et al. (2014) and Liu et al. (2015, 2017, 2020), but as we will use various versions of this product we give 
a brief overview here.

The DEEP-C data set is derived by merging satellite observations of top-of-atmosphere radiative flux time series 
from Earth Radiation Budget Experiment Satellite wide field of view (ERBE WFOV) and ECMWF reanaly-
sis (ERA-Interim/ERA5) since 1985 with Clouds and the Earth's Radiant Energy System (CERES) satellite 
observed fluxes since March 2000. Hence, prior to March 2000 it is largely informed by ERBE WFOV and 
ERA reanalysis, then aligns with CERES from March 2000. AMIP and high resolution AGCM simulations and 
reanalyzes are used in the merging process to bridge the gaps between products and avoid discontinuities in the 
time series, including a gap in the satellite record during 1993 and 1999 (Allan et al., 2014). It is important to 
note that substantial uncertainty in decadal changes in dN associated with the merging process affects the record 
and this is conservatively estimated to be as high as 0.5 Wm −2 for changes applying across the whole record 
(Liu et al., 2020). However, uncertainty in the CERES period since March 2000 is much smaller based on the 
assessment of instrument drift (Loeb et al., 2021). Various versions of the DEEP-C data set exist which parallel 
updates to the underlying products and update the merging process. We use the latest version (DEEP-C v5, Liu 
& Allan, 2022) for our principal analysis, which is based on CERES EBAF v4.1 and ERBS WFOV v3, along-
side ERA5 reanalysis and AMIP6 simulations (Liu & Allan, 2022). To illustrate structural uncertainties in our 
analysis we also use previous versions (v2, v3, and v4) of the DEEP-C data sets. The availability of data sets is 
provided in the Data Availability Statement Section.

3. Historical Feedback and Pattern Effect in amip-piForcing and hadSST-piForcing 
Simulations
Figure 1a shows the multi-model ensemble mean dT time series in the amip-piForcing and hadSST-piForcing 
simulations, alongside an observed estimate from HadCRUT5 analysis data set. The AGCM design reproduces 
the observed historical dT variability well (the correlation coefficient, r, between observed and both simulated dT 
time series is 0.97). However, the AGCMs do not reproduce the observed trends precisely, notably omitting some 
observed warming particularly in the most recent decades (Figure 1a). This is because the AGCM design omits 
a small component of warming associated with land surface temperature change (which is not prescribed in the 
models) that arises as a direct consequence of increases in greenhouse gases and other forcing agents independent 
of SST change (this is often considered as part of the ERF rather than feedback) (see Andrews, 2014; Andrews 
et al., 2018; Gregory & Andrews, 2016). This will be included in the observed record but not in the simulated 
dT because greenhouse gases and other forcing agents are kept constant at preindustrial levels in amip-piForcing 
and hadSST-piForcing.

As dT increases, dN reduces (Figure 1b), that is, the climate loses more heat to space as a consequence of the 
climate response and feedbacks in the system. Figures 1c and 1d show the difference in the dT and dN time 
series between the amip-piForcing and hadSST-piForcing ensemble-mean response. For most of the time the 
differences vary approximately about zero. However, larger differences are evident from 1981 onwards, when 



Journal of Geophysical Research: Atmospheres

ANDREWS ET AL.

10.1029/2022JD036675

8 of 29

the  dN response in amip-piForcing is substantially larger than that in hadSST-piForcing (Figures 1b and 1d), 
up to ∼0.5 W m −2 in some years (Figure 1d). This is consistent with 1981 being the year in which the AMIPII 
boundary condition source data set switches from HadISST1 to OI.v2 SST (see Section 3.2).This motivates us 
to separate the historical record into two time-periods either side of 1980, that is, 1871–1980 and 1981–2010 
(Section 3.2).

However, we first consider feedback and the pattern effect that arises when calculated over the historical 
record as a whole, rather than any time-period within. This is useful for informing studies that use the entire 
observed historical record to estimate ECS via energy budget constraints (e.g., Andrews et al., 2018; Forster 
et al., 2021; Sherwood et al., 2020). It also allows a direct comparison of our results using a broad ensem-
ble of models to the narrower range of model results reported by Andrews et  al.  (2018) and Lewis and 
Mauritsen (2021).

Figure 1. Comparison of multi-model ensemble-annual-mean (a) dT and (b) dN in the amip-piForcing and hadSST-piForcing 
simulations. (c, d) show the difference in dT and dN, respectively, highlighting 1980 as a key year where the dN response 
diverges according to the sea surface temperature data set. In panel (a) the HadCRUT5 observed dT evolution is shown for 
comparison. (e, f) show the relationship between global-annual-mean dT and dN in amip-piForcing and hadSST-piForcing, 
respectively, where λ = dN/dT is calculated from OLS regression on the global-annual-mean data points. The stated 5%–95% 
uncertainty is ±1.645σ from the standard error of the linear fit. (g, h) show the dT and dN relationship separated into two 
time-periods: years 1871–1980 (gray) and years 1981–2010 (blue). The multi-model ensemble-means are restricted to the 
nine Atmospheric General Circulation Models that performed both simulations (see Table 1).
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3.1. Considering the Historical Record as a Whole

Figures 1e and 1f show the λhist = dN/dT relationship in the ensemble-mean amip-piForcing and hadSST-piForcing 
simulation for 1871–2010. λhist is determined from ordinary least square linear regression on global-annual-mean 
dN and dT time series data. λhist values for individual models are given in Table 2 alongside their abrupt-4xCO2 
sensitivity metrics. Across the 14 model ensemble of amip-piForcing simulations λhist  =  −1.65  ±  0.46  W 
m −2 K −1, slightly smaller in magnitude but with similar spread to the Andrews et  al.  (2018) ensemble (they 
reported λhist = −1.74 ± 0.48 W m −2 K −1). Like in Andrews et al. (2018), the spread in λhist is extremely simi-
lar to the spread in λ4xCO2 from the coupled AOGCM abrupt-4xCO2 ensemble (Table 2) (this is also true for 
the individual feedback terms, see below). The pattern effect, Δλ = λ4xCO2 − λhist between amip-piForcing and 
abrupt-4xCO2 (with λ4xCO2 from years 1–150 of abrupt-4xCO2) is Δλ = 0.70 ± 0.47 W m −2 K −1 across the 
ensemble (Table 3), which is slightly larger in magnitude but with more spread than that reported by Andrews 
et al. (2018) (0.64 ± 0.40 W m −2 K −1).

Tables 2 and 3 also present the equivalent λhist and Δλ values when the AGCMs are forced with HadISST1 SSTs 
instead (hadSST-piForcing) and Figure 2 shows the relationship to amip-piForcing. λhist = −1.43 ± 0.41 W m −2 K −1 
in hadSST-piForcing (Table 2), which is smaller in magnitude but with similar spread to the amip-piForcing 
results above. Subsetting to the nine AGCMs with both simulations, λhist is 0.28 ± 0.17 W m −2 K −1 smaller 
in magnitude in hadSST-piForcing but well correlated (r = 0.93) with amip-piForcing values (Figure 2a, red 
points). The regression slopes of the red line in Figure 2a (slope = 0.84 ± 0.21) and 2b (slope = 0.84 ± 0.26) 
are statistically consistent with unity, implying there is little AGCM dependence in the difference between 
λhist from amip-piForcing and hadSST-piForcing. Hence, given the strong correlation and close approxima-
tion of being parallel to the one-to-one line (Figure  2, red points), we suggest a simple offset given by the 
difference (0.28 ± 0.17 W m −2 K −1, Table 3) well approximates the relationship between λhist over 1871–2010 in 
amip-piForcing and hadSST-piForcing.

abrupt-4xCO2 λ1871–2010 (W m −2 K −1) λ1871–1980 (W m −2 K −1)
λ1981–2010  

(W m −2 K −1)

ECS 
(K)

F2x  
(W m −2)

λ4xCO2  
(W m −2 K −1)

λ4xCO2_1–20  
(W m −2 K −1)

λ4xCO2_21–150  
(W m −2 K −1) AMIP HadISST1 AMIP HadISST1 AMIP HadISST1

CAM4 2.95 3.64 −1.23 −1.52 −0.94 −2.14 −1.77 −1.22 −1.45 −2.84 −2.70

CESM2 5.16 3.39 −0.66 −1.17 −0.49 −1.93 −1.49 −0.87 −0.95 −3.08 −2.92

CNRM-CM6-1 4.88 3.66 −0.75 −0.93 −0.87 −1.23 – −1.10 – −1.64 –

CanESM5 5.61 3.64 −0.65 −0.70 −0.59 −1.44 – −0.93 – −1.83 –

ECHAM6_3 3.01 4.10 −1.36 −1.47 −1.08 −1.92 −1.57 −1.43 −1.38 −2.69 −2.42

GFDL-AM3 3.99 2.97 −0.74 −1.13 −0.61 −1.44 −1.35 −0.72 −0.99 −1.90 −1.41

GFDL-AM4 3.84 3.32 −0.86 −1.54 −0.60 −1.84 −1.66 −1.33 −1.40 −2.57 −2.93

HadAM3 3.37 3.52 −1.04 −1.25 −0.75 −1.65 −1.44 −1.35 −1.40 −2.19 −1.86

HadGEM2 4.62 2.90 −0.63 −0.81 −0.33 −1.39 −1.04 −1.12 −1.08 −2.26 −1.54

HadGEM3-GC31-LL 5.54 3.49 −0.63 −0.81 −0.60 −1.28 −1.01 −0.95 −0.84 −1.87 −1.55

IPSL-CM6A-LR 4.56 3.41 −0.75 −0.98 −0.61 −1.59 – −1.17 – −2.50 –

MIROC6 2.58 3.72 −1.44 −1.61 −1.60 −1.42 – −1.21 – −1.87 –

MRI-ESM2-0 3.13 3.44 −1.10 −1.68 −0.78 −1.93 – −1.23 – −2.79 –

MPI-ESM1-2-LR 3.02 4.21 −1.39 −1.61 −1.34 −1.88 −1.58 −1.30 −1.45 −2.55 −2.42

MEAN 4.02 3.53 −0.95 −1.23 −0.80 −1.65 −1.43 −1.14 −1.21 −2.33 −2.19

1.645σ 1.64 0.57 0.49 0.54 0.55 0.46 0.41 0.33 0.38 0.72 0.95

Note. λ values from amip-piForcing and hadSST-piForcing are calculated from OLS regression (λ = dN/dT) over the relevant time-periods using global-annual-mean 
time series data. F2xCO2 is calculated as F4xCO2/2 and ECS = −F2x/λ4xCO2 from 150 years of abrupt-4xCO2 experiments (λ4xCO2 calculated over years 1–20 and 21–150 is 
also shown) (see Andrews et al., 2012, 2015).

Table 2 
Feedback Parameter in amip-piForcing and hadSST-piForcing Simulations Over Various Historical Time-Periods, as Well as abrupt-4xCO2 Sensitivity Parameters
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Despite λhist being smaller in magnitude in hadSST-piForcing, Δλ = 0.48 ± 0.36 W m −2 K −1 is still large and posi-
tive across the hadSST-piForcing ensemble (Table 3). The smaller uncertainty than the amip-piForcing pattern 
effect likely reflects the narrower diversity of model physics in the smaller hadSST-piForcing ensemble, for 
example, we do not have hadSST-piForcing experiments for the model (MIROC6) with the smallest pattern 
effect in amip-piForcing. If we subset the amip-piForcing ensemble to just those nine models with corresponding 
hadSST-piForcing experiments (Figure 2b, red points), then the spread (as measured by 1.645σ) across models 

1871–2010 (W m −2 K −1) 1871–1980 (W m −2 K −1) 1981–2010 (W m −2 K −1)

AMIP HadSST Diff AMIP HadSST Diff AMIP HadSST Diff

CAM4 0.90 0.53 0.37 −0.01 0.22 −0.23 1.60 1.47 0.13

CESM2 1.27 0.84 0.43 0.21 0.29 −0.08 2.43 2.26 0.17

CNRM-CM6-1 0.48 0.35 0.89

CanESM5 0.80 0.28 1.19

ECHAM6_3 0.56 0.21 0.35 0.07 0.02 0.05 1.32 1.06 0.26

GFDL-AM3 0.69 0.61 0.08 −0.03 0.24 −0.27 1.15 0.67 0.48

GFDL-AM4 0.97 0.80 0.17 0.47 0.53 −0.06 1.70 2.07 −0.37

HadAM3 0.61 0.40 0.21 0.31 0.35 −0.04 1.15 0.82 0.33

HadGEM2 0.76 0.41 0.35 0.49 0.45 0.04 1.63 0.91 0.72

HadGEM3-GC31-LL 0.65 0.38 0.27 0.32 0.21 0.11 1.24 0.92 0.32

IPSL-CM6A-LR 0.84 0.43 1.76

MIROC6 −0.02 −0.23 0.42

MRI-ESM2-0 0.83 0.14 1.69

MPI-ESM1-2-LR 0.49 0.19 0.30 −0.09 0.06 −0.15 1.16 1.03 0.13

MEAN 0.70 0.48 0.28 0.19 0.26 −0.07 1.38 1.24 0.24

1.645σ 0.47 0.36 0.17 0.35 0.26 0.20 0.75 0.88 0.46

Table 3 
The Pattern Effect (Δλ = λ4xCO2 − λhist, With λ4xCO2 From Years 1–150 of abrupt-4xCO2) Between abrupt-4xCO2 Radiative 
Feedback and Radiative Feedback Calculated Over Different Historical Periods (i.e., λhist From 1871 to 2010, and Its 
Separation Into 1871–1980 and 1981–2010) in amip-piForcing and hadSST-piForcing, as Well as Their Difference

Figure 2. (a) Relationship between the feedback parameter, λ, in the amip-piForcing and hadSST-piForcing simulations over various historical time-periods. 
Each point is a single Atmospheric General Circulation Model (AGCM). The shaded gray region shows the range of λ4xCO2 from the AGCMs corresponding 
parent atmosphere-ocean general circulation model abrupt-4xCO2 simulation. The one-to-one line (dotted) is shown. (b) Relationship between the pattern effect, 
Δλ = λ4xCO2 − λhist, diagnosed from the amip-piForcing and hadSST-piForcing simulations over various historical time-periods.
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in Δλ reduces from 0.47 to 0.38, which is similar to the spread found in 
hadSST-piForcing.

That a large pattern effect is present in the hadSST-piForcing simulation over 
the historical record is not in contradiction with the results of Lewis and 
Mauritsen 2021 (LM2021), who reported a “negligible unforced historical 
pattern effect” with ECHAM6.3 when forced with HadISST1 SSTs. This 
is because LM2021 calculated their pattern effect by comparing λ from 
hadSST-piForcing to λ derived from a coupled AOGCM historical simula-
tion, or approximations of it from years 1–70 of 1%CO2 or years 1–50 of 
abrupt-4xCO2 simulations. This necessarily gives a smaller pattern effect 
because it excludes many of the SST variations and pattern effects seen on 
longer timescales in CO2 forced simulations (Andrews et  al.,  2012,  2015; 
Armour et al., 2013; Geoffroy et al., 2013; Gregory et al., 2004; M. A. A. 
Rugenstein et al., 2016; Senior & Mitchell, 2000). While this might be useful 
for trying to quantify different mechanisms of the pattern effect (e.g., forced 
or unforced, see Dessler, 2020), it is a quantity we are less interested in, as we 
want to know the λ of relevance to long-term ECS and projections of the late 
21st century. Therefore, contrasting to λ4xCO2 from years 1–150 is the most 
relevant metric (Sherwood et al., 2020), as we have done here.

Following Andrews et al. (2018) we decompose λ into its component long-
wave (LW) clear-sky, shortwave (SW) clear-sky, and cloud radiative effect 

(CRE, equal to all-sky minus clear-sky fluxes) terms in Figure 3. Deviations away from the one-to-one line indi-
cate a difference in amip-piForcing and abrupt-4xCO2 λ (i.e., the pattern effect). Tables of the individual model 
results are given in the Tables S1–S3 in Supporting Information S1. It confirms the basic premise that historical 
LW clear-sky and cloud feedbacks are more stabilizing than under abrupt-4xCO2, consistent with the mecha-
nistic and process understanding that the pattern effect arises predominantly from a lapse-rate (which affects 
LW clear-sky fluxes) and cloud feedback dependence on SST patterns (e.g., Andrews & Webb, 2018, Ceppi & 
Gregory, 2017; Dong et al., 2019; Zhou et al., 2016). Figure 3 and Tables S1–S3 in Supporting Information S1 
show that the inter-model spread in feedback in both amip-piForcing and abrupt-4xCO2 is dominated by cloud 
rather than clear-sky feedbacks. Figure 3 also suggests there is a small compensation to the total pattern effect 
from SW clear-sky feedbacks, likely from sea-ice. That is, AGCMs forced with AMIP II boundary condition 
sea-ice changes have a slightly more positive feedback than found in their coupled abrupt-4xCO2 simulations, 
though the difference is small (Figure 3). Consequently, a simple attribution of the difference in total feedback 
between amip-piForcing and abrupt-4xCO2 to an SST driven pattern effect (as we have done here) will slightly 
understate the actual effect, though the term is small and we neglect it from now on. We discuss sea-ice uncer-
tainties further below.

MIROC6 is the only model in the amip-piForcing ensemble to have near zero pattern effect (Table 3 and note 
the single black dot on the one-to-one line in Figure 3). The reason for this different behavior remains unclear. 
One could speculate that there is a relationship between a model's climate sensitivity and its pattern effect, given 
that MIROC6 has the lowest ECS of all models considered here (ECS = 2.6 K, Table 2). However, we note that 
there is little correlation between ECS and Δλ across models (r = 0.4) and that several other models with low 
ECS have large Δλ.

Alternatively, it could be that MIROC6's atmospheric physics is largely insensitive to different SST patterns and/
or that its AOGCM abrupt-4xCO2 warming pattern is more similar to the historical record than other models. 
Both are potentially possible. For example, λhist for 1871–1980 and 1980–2010 separately (next Section and 
Table 2) shows that MIROC6 does simulate a pattern effect, but achieves a near zero pattern effect over the 
historical record as a whole by having a smaller (relative to other models) pattern effect over recent decades, 
offset by a negative pattern effect over the earlier period. In addition—and in contrast to other models—MIROC6 
simulates a negative LW clear-sky pattern effect (red dot below the one-to-one line, Figure 3) which offsets its 
positive cloud feedback pattern effect.

Figure 3. Relationship across models (dots) between the feedback parameter 
in amip-piForcing (calculated over years 1871–2010) and abrupt-4xCO2 
simulation (calculated over years 1–150). The net feedback parameter is 
decomposed into its longwave clear-sky, shortwave clear-sky, and cloud 
radiative effect components.
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The model with the largest pattern effect is CESM2 (Table 3). This occurs because of a particularly large cloud 
feedback sensitivity to SST patterns (gray dot furthest from the one-to-one line, Figure 3). Zhu et al. (2022) argue 
that an issue in CESM2's cloud microphysics related to cloud ice number leads to an unrealistically large cloud 
sensitivity to warming in this model. Whether this is responsible for the model's large pattern effect is unclear. 
Mixed-phase clouds have not typically been associated with the pattern effect, though might be of relevance 
to pattern effects over the Southern Ocean (Bjordal et al., 2020; Dong et al., 2020). It would be interesting in 
future work to identify the different cloud types associated with the pattern effect and conduct sensitivity experi-
ments with CESM2 to investigate which aspects of the cloud feedback change with different cloud microphysics 
schemes.

Many of our amip-piForcing simulations (11 models) continue to December 2014 (Table 1), and six have corre-
sponding hadSST-piForcing simulations, so we consider how this extended period affects the overall assessment 
of the historical pattern effect. In the 11 amip-piForcing simulations, λhist  =  −1.65  ±  0.48  W m −2  K −1 over 
1871–2010, but this increases in magnitude so that λhist = −1.71 ± 0.51 W m −2 K −1 if calculated over 1871–2014 
(Table S4 in Supporting Information S1). An increase occurs in every model and the magnitude of change across 
the ensemble is 0.07 ± 0.06 W m −2 K −1 (Table S4 in Supporting Information S1). In the six corresponding 
hadSST-piForcing simulations, λhist = −1.48 ± 0.41 W m −2 K −1 over 1871–2010, but this increases in magnitude 
so that λhist = −1.53 ± 0.39 W m −2 K −1 if calculated over 1871–2014 (Table S4 in Supporting Information S1). 
The magnitude of the increase (0.05 ± 0.05 W m −2 K −1) is thus slightly smaller in this data set (Table S4 in 
Supporting Information S1).

While we have focused on the SST driven pattern effect, a remaining structural uncertainty in assessing total 
feedback differences between λ4xCO2 and λhist relates to the sea-ice data set used to force the AGCMs. Andrews 
et  al.  (2018) provided a sensitivity test (see their Supplementary Material) by repeating the amip-piForcing 
simulation in two AGCMs but forced with HadISST2.1 (Titchner & Rayner, 2014) SSTs and sea-ice. They found 
that the historical feedback parameter increased by ∼0.6 W m −2 K −1 when forced with HadISST2.1 compared to 
AMIP II, and attributed most of this change to differences in the sea-ice data sets rather than SST. They noted that 
HadISST2.1 has substantially more preindustrial Antarctic sea-ice concentration (see Titchner & Rayner, 2014), 
and so generated more sea-ice loss (more positive feedback) over the historical period (Andrews et al., 2018), as 
well containing large discontinuities in the time series. The historical sea-ice trends and associated feedbacks over 
the Southern Ocean in the HadISST2.1 data set are difficult to reconcile with those found in AOGCMs and our 
physical understanding of them (Schneider et al., 2018). We do not pursue this further, but simply highlight that 
data set assumptions made about preindustrial sea-ice concentrations in Antarctica can have substantial impacts 
on diagnosed feedbacks in AGCMs and remains an outstanding uncertainty in assessing total feedback differ-
ences. Fortunately, in amip-piForcing the difference in SW clear-sky feedback (which will be strongly impacted 
on by sea-ice feedbacks) is similar to that seen in λ4xCO2 (Figure 3) so this can be ignored if the focus is solely on 
SST driven feedbacks in the atmosphere.

In summary, for warming since the 1800s (using either 1871–2010 or 1871–2014), both amip-piForcing and 
hadSST-piForcing suggest a substantial pattern effect between radiative feedbacks operating over historical 
climate change and long-term ECS.

3.2. Considering the Historical Record Before and After 1980

We now return to the divergence in dN response between amip-piForcing and hadSST-piForcing simulations 
around 1980 (Figure  1d). As well as the change in behavior discussed above, 1980 provides a convenient 
separation of historical feedbacks and the pattern effect for two other motivating reasons: (a) Fueglistaler and 
Silvers (2021) identify ∼1980 as the point in which the Earth begins to warm with a particular configuration of 
tropical Pacific SSTs where regions of deep convection warm substantially more than the tropical mean, driving 
large negative cloud feedbacks and consistent with a large pattern effect over this period (Andrews et al., 2018; 
Gregory & Andrews, 2016; Gregory et  al.,  2020; Zhou et  al.,  2016); and (b) Fueglistaler and Silvers  (2021) 
also identify ∼1980 as a useful approximation of when the satellite era was integrated into the global observing 
system, and so developing an understanding of feedbacks and the pattern effect specifically from 1980 onwards 
will aid interpretation of our most comprehensive observations of climate change and how they might relate to 
the future change (next Section).
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Figure  4 compares the surface temperature pattern over the two time-periods 1871–1980 and 1981–2010 in 
amip-piForcing and hadSST-piForcing. Differences between the two SST reconstructions are extremely subtle. 
For the earlier 1871–1980 time-period, warming is more uniform, in part because of the longer time-period 
considered which will smooth out variability. Since 1981 there has been western Pacific warming with cooling in 
the Southern Ocean and off equatorial eastern Pacific (which are regions of marine low clouds), despite temper-
atures increasing in the global mean. Hence, we might expect a small pattern effect prior to 1980 and a large 
pattern effect post 1980 (e.g., Andrews & Webb, 2018; Ceppi & Gregory, 2017; Dong et al., 2019; Fueglistaler 
& Silvers, 2021; Gregory & Andrews, 2016; Zhou et al., 2016).

Figures 1g and 1h show the λhist = dN/dT relationship in the ensemble-mean amip-piForcing and hadSST-piForcing 
simulation for 1871–1980 (gray points) and 1981–2010 (blue points). Results for individual models are given in 
Table 2. Figures 1g and 1h confirm the basic premise that λhist strengthens in magnitude post 1980, consistent with 
the change in SST patterns (Figure 4).

For the earlier time-period, 1871–1980, λhist  =  −1.14  ±  0.33  W m −2  K −1 in amip-piForcing is similar to 
λhist = −1.21 ± 0.38 W m −2 K −1 in hadSST-piForcing (Table 2)—suggesting little sensitivity of the results to 
these two SST data sets over this time-period. This is unsurprising given that the data sets are similar (though not 
identical) prior to this period (Section 2.2 and Figure 4). For the nine AGCMs that performed both simulations 

Figure 4. Pattern of near-surface temperature change (local dT per global-mean dT) for the time-periods 1870–1980 and 
1981–2010 in panels (a and b) amip-piForcing and panels (c and d) hadSST-piForcing. Patterns are calculated from the slope 
of the linear regression of local temperature change against global-mean temperature change using annual-mean data points. 
Note that by definition the global-means are unity. Data from HadGEM3-GC31-LL simulations have been used for this 
illustration.
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Figure 2a shows the relationship between λhist in amip-piForing and hadSST-piForcing. For all time-periods λhist 
in amip-piForcing and hadSST-piForcing is found to be well correlated (r ≥ 0.87, Figure 2a). For the earlier 
1871–1980 results, the λhist values fall close to the one-to-one line (blue dots, Figure 2) and within the range 
of λ4xCO2 (gray shaded areas in Figure 2). This suggests that for 1871–1980 λhist is broadly independent of the 
two SST data sets (consistent with their common basis) and that the pattern effect is small for this time-period. 
Indeed, the 1871–1980 pattern effect is small but positive (Δλ = 0.19 ± 0.35 W m −2 K −1 in amip-piForcing and 
0.26 ± 0.26 W m −2 K −1 in hadSST-piForcing, Table 3 and Figure 2b).

In contrast, for 1981 onwards (i.e., 1981–2010), λhist is generally far from the λ4xCO2 range (i.e., a large pattern 
effect) and away from the one-to-one line (i.e., a dependence on the SST data set) (Figure 2a; gray points). Indeed, 
λhist over 1981–2010 is substantially stronger in magnitude than over 1871–1980 (λhist = −2.33 ± 0.72 W m −2 K −1 
in amip-piForcing over 1981–2010, Table 2; Figure 2a) and the pattern effect is large (Δλ = 1.38 ± 0.75 W 
m −2 K −1, Table 3; Figure 2b), although somewhat weaker in magnitude in hadSST-piForcing (Δλ = 1.24 ± 0.88 W 
m −2 K −1, Table 3; Figure 2b). For 1981–2010, λhist is generally weaker in hadSST-piForcing (Table 2; Figure 3a) 
by 0.24 ± 0.46 W m −2 K −1 across the nine AGCMs using both SST data sets.

These results are generally consistent with Fueglistaler and Silvers (2021) and Lewis and Mauritsen (2021) who 
both point to the AMIP II SST data set as having larger (relative) western tropical Pacific warming than in other 
SST data sets, and hence from the process understanding we would expect a more negative feedback (and larger 
pattern effect) in amip-piForcing, as found above. The one exception is GFDL-AM4, which simulates a more 
negative λhist under HadISST1 SSTs than AMIP II from 1981 to 2010, and so a larger pattern-effect over this 
period under HadISST1 SSTs (Tables 2 and 3 and the single gray dots in Figures 2a and 2b which sit on the other 
side of the one-to-one line from the other models). The reasons for this remain unclear.

In summary, we have shown that a division around 1980 usefully separates historical climate change into two 
time-periods: (a) pre 1981 the Earth warmed over most of the historical record with an averaged warming pattern 
that is relatively uniform, and feedbacks largely consistent with long-term ECS feedbacks (i.e., a relatively small 
pattern effect), and (b) post 1980 where the Earth warmed with a particular configuration of strong SST gradi-
ents that drove feedbacks much more stabilizing than those seen in long-term ECS feedbacks (i.e., large pattern 
effect), albeit with a sensitivity of the magnitude of this result to the SST data set considered.

3.3. Relationships Between Historical and ECS Feedbacks

We now consider whether feedbacks over the historical period in amip-piForcing are related to λ4xCO2. This is in 
contrast to the previous sections which only quantified their difference (i.e., the pattern effect).

First, we note that the spread in feedback across models over the earlier (1871–1980) time-period in amip-piForcing 
is well correlated with the spread in feedback across models in abrupt-4xCO2 (r = 0.69, Figure 5a). In contrast, 
feedbacks over the most recent decades (1981–2010) are only weakly correlated with λ4xCO2 (r = 0.27). Second, 
feedback over the full historical record (1871–2010) is only weakly correlated with feedback from the 1871–1980 
time-period (r = 0.45, Figure 5b). In contrast, 1871–2010 feedback is strongly correlated with feedback over the 
most recent 1980–2010 decades (r = 0.91, Figure 5b). This strong correlation between 1981 and 2010 and the 
1871–2010 feedback arises because the spread for 1871–2010 is dominated by the spread for 1981–2010.

Given that the feedbacks applying in 1871–1980 and in 1981–2010 are different, we infer that the SST patterns 
over these two periods are driven by different mechanisms. Because the feedbacks of 1871–1980 are correlated 
with abrupt-4xCO2, the difference between the two periods could be explained by CO2 being the dominant influ-
ence in 1871–1980 SST patterns, while something else (e.g., perhaps variability, aerosol, and volcanism) domi-
nates during 1981–2010. This is only a hypothesis, because these experiments do not provide a way to attribute 
the observed SST changes to causes.

The result is that the spread in feedbacks over the full historical record are only weakly correlated with λ4xCO2 
(r = 0.51, Figure 3), because of the strong pattern effect post 1980. Hence, we can say little about future λ4xCO2 
directly from climate change post 1980 or even the full historical record without adjusting for a pattern effect. 
In contrast, the feedbacks operating over the earlier 1871–1980 time-period are correlated with λ4xCO2 (r = 0.69, 
Figure 5a).

That recent decadal feedbacks are the most unrepresentative of the long-term climate sensitivity is unfortunate, 
not just because it coincides with the advent of the satellite record and so is extremely well observed, but also 
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because climate change since ∼1980 ought to provide the best constraint on ECS (e.g., Jiménez-de-la-Cuesta & 
Mauritsen, 2019). This is because it offers a strong global warming signal, which AOGCMs attribute to green-
house gas increases, while avoiding the large uncertainty associated with global-mean aerosol radiative forc-
ing in energy budget estimates of ECS. However, the role of aerosols should not be discounted entirely, since 
strong compensating regional changes may have impacted on SST patterns (e.g., Moseid et  al.,  2020; D. M. 
Smith et  al.,  2015; Takahashi & Watanabe,  2016). In contrast, although feedbacks operating over the earlier 
1871–1980 part of the historical record are correlated with long-term CO2 induced feedbacks, a reliable observa-
tional constraint is harder because the climate change signal is smaller and the observations poorer. We discuss 
this further in the Discussion section.

Up to now we have only considered a comparison of amip-piForcing feedbacks to a single definition of 
abrupt-4xCO2 feedbacks (i.e., feedbacks diagnosed over years 1–150 in abrupt-4xCO2). Here, we briefly 
consider separating λ4xCO2 into the two principal timescales of the abrupt-4xCO2 response following Andrews 
et al. (2015) by calculating λ4xCO2 over years 1–20 (a fast timescale) and 21–150 (a slow timescale) (Table 2). The 
rationale is that 20 years is approximately the timescale required for the mixed-layer to equilibrate in response to 
step forcing, and any subsequent climate response scaling with the slower deep-ocean timescale, as approximated 
by two-layer models (Geoffroy et al., 2013; Gregory et al., 2015; Held et al., 2010).

Figure 5c shows λhist from 1871 to 1980 is largely scattered about the one-to-one line with λ4xCO2 from years 1–20, 
suggesting little to no pattern effect between these two. This is potentially consistent with the historical record 
largely being the result of the faster timescale responses (Held et al., 2010; Proistosescu & Huybers, 2017). In 
contrast, post-1980 λhist is far from the one-to-one line (i.e., large pattern effect to years 1–20 of abrupt-4xCO2, 
Figure 5c) but is marginally correlated (r = 0.53), suggesting recent decades do contain some information rele-
vant to the feedback seen in the fast timescale response to CO2. However, the longer-term feedbacks associated 
with the slow timescale response to CO2 (years 21–150 of abrupt-4xCO2, Figure 5d) have no correlation with 
λhist post-1980 (r = −0.06, Figure 5d).

Figure 5. Relationships between model simulated feedbacks in amip-piForcing over years 1871–1980 (blue) or 1981–2010 
(gray) and (a) λ4xCO2 from abrupt-4xCO2, (b) λhist over the entire historical record (1871–2010), (c) λ4xCO2 from abrupt-4xCO2 
over years 1–20, and (d) years 21–150.
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3.4. Decadal Variability in Feedbacks and the Pattern Effect

In this final section of GCM results we briefly comment how λhist and the pattern effect varies on decadal times-
cales in the amip-piForcing and hadSST-piForcing simulations.

Following Gregory and Andrews  (2016) we calculate λhist  =  dN/dT over a moving 30  years window in the 
amip-piForcing and hadSST-piForcing simulations (Figures 6a and 6b). For example, λhist calculated over the 
30 year period 1925–1954 is presented at year 1939.5 in Figure 6. In Figures 6c–6h the LW and SW clear-sky and 
cloud radiative effect of the feedback are also shown. The correlation coefficient between the amip-piForcing and 
hadSST-piForcing multi-model-mean λhist time series is 0.84, suggesting the broad features of the decadal λhist vari-
ations are robust to the SST data sets. In particular λhist peaks (least negative, smallest pattern effect) around 1940 
while generally being large in magnitude (large pattern effect) over recent decades (see also Andrews et al., 2018; 
Gregory & Andrews, 2016; Gregory et al., 2020; Zhou et al., 2016). The clear sky feedbacks (Figures 6c–6f) are 
largely stable, while the variation in λhist is almost entirely explained by variation in cloud feedback (Figures 6g 
and 6h), consistent with previous findings (e.g., Andrews et al., 2018; Zhou et al., 2016).

In Section 5, we discuss further the reasons for the decadal variations in SST patterns and λhist, that is, whether 
they are the result of spatiotemporal changes in forcings such as aerosols or volcanic forcing or due to unforced 
variability.

4. Observed Climate Change
We next consider whether the radiative feedback and pattern effects simulated by the GCMs are consistent with 
observed variations in the Earth's energy budget. Gregory et al. (2020) asked a similar question for the post 1980 
period and suggested they are (see their Figure 5c), but here we go a few steps further. Specifically, not only do 
we consider the post 1980 period, but also assess changes in the Earth's energy budget back to the 1800s. Further-
more we investigate the implications of a strongly negatively feedback parameter (large pattern effect) since 1985 
on the observed rate of global warming.

The observations also provide an opportunity to bring our λhist and pattern effect estimate up to date with the most 
recently observed data (up to and including 2019), whereas our GCM analysis generally finished in 2014. The 
observations post 2014 period are of particular interest given they include the major El-Nino event of 2015/2016 
that was associated with eastern-pacific warming and marked changes in the observed radiation budget (Loeb 
et al., 2020, 2021). We expect these post 2014 years to have an impact λhist and the pattern effect, given the process 
understanding discussed previously (e.g., Andrews & Webb, 2018, Ceppi & Gregory, 2017; Dong et al., 2019; 
Zhou et al., 2016).

4.1. Comparison of AGCM Results to Observed Estimates

We first validate the AGCM λhist estimates over recent decades. To do this we use a merged satellite data set 
(ERBE WFOV + CERES) (Allan et al., 2014) that provides an observational estimate of dN variations from 1985 
to 2019. For dT we use the HadCRUT5 analysis data set (Morice et al., 2021). For dF we use the IPCC AR6 
(Forster et al., 2021; C. Smith et al., 2021) best estimate historical ERF changes. These data sets are described 
in further detail in Section 2.4. We first consider the 30-year period 1985–2014, consistent with many of the 
AGCMs.

Figures  7a and  7b show the dT, dN, and dF time series over this period. The 1985–2014 “observed” −
λhist = d(F − N)/dT ∼ 2.0 ± 0.7 W m −2 K −1 relationship is shown in Figure 7d. Note the stated 5%–95% uncer-
tainty is ±1.645σ from the standard error of the linear fit, with no allowance for systematic uncertainties. As 
discussed in Section 2.4, observed multi-decadal changes in dN are subject to a substantial uncertainty (up to 
0.5 Wm −2) primarily related to the breaks in the record prior to 2000, though are considerably smaller afterward 
(Liu et al., 2020). Note also that years 1991–1992 are excluded from the calculation as these years are identified 
as being strongly impacted by the volcanic forcing from the Pinatubo eruption (Figure 7b). While λhist is robust 
to this (we get just the same λhist ∼ −2.0 ± 0.7 W m −2 K −1 if we include these years), including these years has 
an impact on the ocean heat uptake efficiency estimate (see Section 4.3). The observed 1985–2014 λhist estimate 
is shown on Figures 6a and 6b (red line) as an illustration in comparison to the AGCM decadal variations in 
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Figure 6.
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λhist. The observed λhist best estimate agrees exceptionally well with the AGCM multi-model mean, and nearly all 
models are within the 5%–95% uncertainty estimate as they approach the 1985–2014 value (Figures 6a and 6b).

A more rigorous comparison of individual AGCM results to the observed estimate is shown in Figure 8. Here, 
the AGCM λhist estimates from amip-piForcing and hadSST-piForcing have been calculated in the same way as 
the observations, that is, over 1985–2014 excluding 1991–1992. The overlap between the model and observed 
estimates points to broad consistency between the models and observations in the recent decadal value of λhist 
(Figure 8). The large uncertainties (which are likely underestimated since we have not accounted for structural 
errors) inhibit a more precise validation of individual models against the observed estimate.

For the full historical record we estimate λhist from IPCC AR6 assessed changes in T, N, and F. Forster et al. (2021) 
give these as ΔT  =  1.03  ±  0.20  K, ΔN  =  0.59  ±  0.35  W m −2, and ΔF  =  2.20 [1.53–2.91]  W m −2 for the 
time-period 1850–1900 to 2006–2019. For simplicity we assume ΔF = 2.20 ± 0.7 W m −2, where we have approx-
imated the uncertainty in ΔF as a Gaussian. Randomly sampling (with replacement) from the Gaussian distribu-
tions in ΔN, ΔF, and ΔT gives λhist = (ΔN – ΔF)/ΔT = −1.6 ± 0.8 W m −2 K −1. This is again in agreement with 
the amip-piForcing (λhist = −1.65 ± 0.46 W m −2 K −1, Table 2) and hadSST-piForcing (λhist = −1.43 ± 0.41 W 
m −2 K −1, Table 2) 1871–2010 ensembles, though an exact match is not expected given the slightly different 
time-periods and methods (e.g., finite differences vs. regression) used. Still, the agreement provides further confi-
dence in the GCM's simulated radiative response to observed SST and sea-ice variations over the historical 
record, and strengthens the conclusion that λhist has become more negative over recent decades compared to the 
longer 1871–2010 time-period.

Finally, IPCC AR6 assessed the long-term ECS relevant feedback parameter (analogous to our λ4xCO2) to be 
−1.16 ± 0.65 W m −2 K −1 (Forster et al., 2021) by combining lines of evidence from observations, theory, process 
models, and GCMs on individual climate feedback processes. Combining this with our observed λhist estimates 
above gives an estimate of the pattern effect independently of our GCM ensemble. This gives an estimated pattern 
effect of ∼0.8 ± 1.0 W m −2 K −1 for 1985–2015 and ∼0.4 ± 1.1 W m −2 K −1 for the full historical record (the 
1850–1900 to 2006–2019 changes). While the uncertainties are substantial, there is again agreement with our 
GCM results.

4.2. Recent Observed Trends and the Efficiency of Ocean Heat Uptake

We have seen that both models and observed variations in the Earth's energy budget agree on the Earth having 
had strongly stabilizing feedbacks over recent decades relative to AOGCM feedbacks under long-term CO2 
forced climate change. Quantifying this in a different way, a feedback parameter of ∼−2.0 Wm −2 K −1 suggests an 
EffCS = −F2x/λhist as low as ∼4.0/2.0 ∼ 2.0 K operating over 1985–2014, assuming F2x = 4.0 W m −2 (Sherwood 
et  al.,  2020). From this it seems possible that the rate of global warming over this period (∼0.19  K dec −1, 
Tokarska et al., 2020) might have been larger had the Earth warmed over this period with a pattern of SST asso-
ciated with more positive feedbacks, as found in earlier parts of the historical record (Section 3). However, we 
also investigate the possibility that changes in ocean heat uptake efficiency may have compensated the changes 
in feedbacks and low EffCS to maintain a higher warming rate over this period than would be expected without 
this compensation.

To do this we turn to the “climate resistance” (ρ, units W m −2 K −1) “zero-layer” model of Gregory and Forster 
(2008) to analyze the ocean heat uptake efficiency (κ, units W m −2 K −1). This is expressed as dF = ρ dT, where 
ρ = κ − λ, and κ is defined as κ = dN/dT and is found to be strongly related to the thermal coupling constant (γ, 
units W m −2 K −1) between the upper and lower ocean in the two-layer model (Gregory et al., 2015; see their 
Figure 8). While initially proposed to describe scenarios with steadily increasing forcing, it is also been applied 
to ∼30 years timescales to usefully describe or interpret the energy balance (Gregory & Forster, 2008; Watanabe 
et al., 2013). Despite being a gross simplification of the climate system (we discuss potential limitations below), 

Figure 6. Decadal variation in the feedback parameter λ from 1871 to 2010. Left column shows results from amip-piForcing and right column shows results from 
hadSST-piForcing. Each gray line represents a single Atmospheric General Circulation Model (see Table 1). Thick black is the ensemble-mean of the results. X-axis 
represents the center of a 30 years moving window in which λ = dN/dT is calculated from OLS regression on annual-mean data, that is, λ at 1980.5 represents the 
feedback parameter over years 1966–1995. Shown in panels (a and b) is the net feedback parameter. Blue dots and lines represent the corresponding λ4xCO2 values from 
atmosphere-ocean general circulation model abrupt-4xCO2 simulations (Table 2). Red shows an observational estimate and 5%–95% uncertainty of λ = d(N − F)/
dT ∼ −2.0 ± 0.7 W m −2 K −1 over years 1985–2014 (see Section 4). (c–h) shows the corresponding longwave clear-sky, shortwave clear-sky, and cloud radiative effect 
components of λ.



Journal of Geophysical Research: Atmospheres

ANDREWS ET AL.

10.1029/2022JD036675

19 of 29

dF  =  ρ dT is found to be an excellent approximation (r  =  0.86) over 1985–2014 (excluding the 1991–1992 
Pinatubo years, see below) in our data (Figure 7c). From this relationship we deduce ρ = dF/dT ∼ 2.4 ± 0.5 W 
m −2 K −1 over 1985–2014 (Figure 7c) and similarly κ = dN/dT ∼ 0.4 ± 0.8 W m −2 K −1. In contrast, AOGCM 

Figure 7. Observational estimate of the Earth's 1985–2019 energy balance. All points are global-annual-means. (a) dT 
(HadCRUT5 analysis data set; Morice et al., 2021), (b) dN (DEEP-C v5; Allan et al., 2014; Liu & Allan, 2022) and dF (IPCC 
AR6; Forster et al., 2021; C. Smith et al., 2021). (c) ρ = dF/dT relationship and (d) −λhist = −d(N − F)/dT relationship over 
years 1985–2014. Black dots are global-annual means over years 1985–2014 excluding years 1991–1992 which are strongly 
influenced by the Pinatubo explosive volcanic eruption (see red line in panel (b)). Red points in panels (c and d) are years 
2015–2019. The stated 5%–95% uncertainties are ±1.645σ from the standard error of the linear fit.

Figure 8. Comparison of the 1985–2014 feedback parameter, λhist = d(N − F)/dT, in amip-piForcing and hadSST-piForcing 
simulations to an observed estimate based on DEEP-C V5 dN (Allan et al., 2014; Liu & Allan, 2022), HadCRUT5 analysis 
dT (Morice et al., 2021) and IPCC AR6 dF (Forster et al., 2021; C. Smith et al., 2021). The 5%–95% uncertainty is simply 
1.645σ from the standard error of the linear fit, with no allowance for systematic uncertainties. Note also that years 
1991–1992 are excluded from the calculation as these years are identified as being strongly impacted by the volcanic forcing 
from the Pinatubo eruption (Figure 7b).
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simulations of steady increasing CO2 generally have a larger ocean heat uptake efficiency (κ = 0.73 ± 0.18 W 
m −2 K −1 for years 61–80 of CMIP5 1%CO2 AOGCM simulations, Gregory et al., 2015).

Another effect on surface temperature to consider is the possibility that the pattern of surface warming and/or 
atmospheric circulation may change the efficiency of global heat uptake (and vice versa), thus not only is λ incon-
stant, but κ may also vary. Using passive ocean uptake experiments wherein ocean circulation cannot change, 
Newsom et al.  (2020) find that ocean heat uptake efficiency can be expected to be smaller when warming is 
enhanced in the tropics (where deep ocean ventilation is small) and larger when warming is enhanced in the high 
latitudes (where deep ocean ventilation is large). With relatively small warming in the southern high latitudes, 
this suggests that the surface/ocean-mixed layer might have been less efficient at fluxing heat into the deep ocean 
over the same period as the large pattern effect, potentially enhancing global surface warming and muting some of 
the impact of feedback changes. However, stronger trade winds, as have been observed over 1981–2010, can also 
be expected to accelerate subtropical cells, enhancing ocean heat uptake efficiency and slowing global surface 

warming (England et al., 2014), an effect not accounted for in the passive 
ocean heat uptake experiments of Newsom et  al.  (2020). Thus, variations 
in both radiative feedbacks and ocean heat uptake appear to be physically 
linked through SST patterns and may even to some extent covary (Newsom 
et al., 2020).

As our dN time series does not predate 1985 we cannot investigate whether κ 
has varied in a way that would counter changes in λhist prior to 1985. Instead, 
we go forward in time exploiting the data sets up to and including 2019. 
This includes the major El-Nino event of 2015/2016 and marked changes in 
the observed radiation budget (Loeb et al., 2020, 2021). Figure 9 illustrates 
the impact of this event on the pattern of decadal surface warming. Over 
1985–2014 there is marked cooling over the eastern Pacific (Figure 9a) which 
is much reduced when the pattern is calculated over 1987–2016 (Figure 9b) 
to include the peak 2015–2016 El-Nino years. The difference (Figure  9c) 
shows the warming event of the 2015–2016 El-Nino on the eastern Pacific, 
while cooling in the western Pacific, as well as a slight reduction in Southern 
Ocean cooling. This is precisely the pattern of SST change we would expect 
to have an impact on λ.

Table  4 shows the impact on 30-year derived ρ, λ, and κ values moving 
forward in time from 2014, up to and including 1990–2019. Figure 7 (red 
crosses) shows these additional 5 years in comparison to the 1985–2014 ρ 
and λ relationships. Post 2014, λ reduces in magnitude (Table 4) and all the 
red crosses fall below the 1985–2014 λ relationship in Figure 7d. λ is approx-
imately 25% smaller in magnitude over 1990–2019 compared to 1985–2014 

dN data set 
version

Start 
year

End 
year

ρ (W 
m −2 K −1)

−λ (W 
m −2 K −1)

κ (W 
m −2 K −1)

DEEP-C v2G 1985 2014 2.38 2.24 0.14

DEEP-C v3 2.38 2.24 0.14

DEEP-C v3G 2.38 2.24 0.14

DEEP-C v4 2.38 1.98 0.41

DEEP-C v5 2.38 1.98 0.41

DEEP-C v5 1986 2015 2.38 1.75 0.63

DEEP-C v5 1987 2016 2.25 1.55 0.70

DEEP-C v5 1988 2017 2.21 1.62 0.59

DEEP-C v5 1989 2018 2.23 1.66 0.57

DEEP-C v5 1990 2019 2.30 1.44 0.86

Note. The lower half of the table shows how ρ, λ, and κ estimates change 
as the 30 years moving window advances to 1990–2019. In all calculations 
HadCRUT5 analysis dT (Morice et  al.,  2021) and IPCC AR6 dF (Forster 
et al., 2021; C. Smith et al., 2021) are used. Years 1991–1992 are excluded 
from the calculation as these years are identified as being strongly impacted 
by the volcanic forcing from the Pinatubo eruption (Section 4).

Table 4 
Comparison of the 1985–2014 Climate Resistance (ρ = dF/dT), Feedback 
Parameter (−λ = −d(N − F)/dT, and Ocean Heat Uptake Efficiency 
(κ = dN/dT) Using Different Versions of the DEEP-C (Allan et al., 2014) 
Satellite Based Reconstruction of dN (See Section 2.4)

Figure 9. Pattern of near-surface temperature change (local dT per global-mean dT) for the time-periods (a) 1985–2014 and (b) 1987–2016, and (c) shows the 
difference (b minus a). Data is the HadCRUT5 analysis data set (Morice et al., 2021). Patterns are calculated from the slope of the linear regression of local temperature 
change against global-mean temperature change using annual-mean data points. Note that by definition the global-means of panels (a and b) are unity.
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(Table 4). This is consistent with process based arguments that a shift to eastern Pacific warming post 2014 ought 
to drive more positive feedbacks and consequently a reduction of the pattern effect over these years. It is also 
consistent with Loeb et al. (2020) who performed a similar analysis but over 2001–2014 compared to 2001–2017. 
They also showed that AGCMs were able to capture this change in radiative response. It would be useful for 
future analysis if amip-piForcing type simulations were extended to at least 2019 to capture the largest change in 
λ (Table 4), and ideally right up to the most recent SST and sea-ice data available.

In contrast to λ, ρ is relatively stable to these additional years (Table 4) and the 1985–2014 ρ relationship is found 
to be an excellent predictor for 2015–2019 (red crosses fall on or close to the line, Figure 7c). A consequence of 
ρ being well approximated as constant but λ not, is that κ (equal to ρ + λ) must compensate for the change in λ. 
Thus beyond 2014, the pattern effect declines but its impact on surface temperature is buffered by a change in 
ocean heat uptake efficiency. This is consistent with the original hypothesis that variations in SST patterns affect 
both heat loss to space (radiative feedbacks) and the efficiency of heat uptake into the deep-ocean in a way that 
might covary (Newsom et al., 2020). However, the extent of any anticorrelation is unclear, it may simply apply 
to short-term variability. It clearly does not apply to longer term forced changes, given that Gregory et al. (2015) 
found substantial variations in ρ, which would not occur if κ and λ were strongly anticorrelated.

While the zero-layer model appears to work well on this short timescale (Figure 7c) we caution against assum-
ing all changes in ocean heat content are driven by global T, as assumed by the dN = κdT relationship. This is 
because, especially on short timescales, other influences that do not correlate with global T, such as wind-driven 
ocean circulation changes perhaps, will also alter ocean heat content (England et al., 2014). In such a situation, 
it would be reasonable to write N = κT + U where U is an additional term to the heat balance, not related to 
global T. This implies κ = N/T – U/T, and including this term in the forced heat balance, N = F + λT + U, gives 
λ = (N − F)/T – U/T. Thus, U/T would perturb the estimate of κ (a positive number) and λ (a negative number) in 
opposite directions, as we see in our data. Hence, our results are potentially evidence for variation in ocean heat 
content not driven by global T, but we cannot say exactly what it is—other than it does not scale with global T.

We caution that structural errors could impact on our diagnosis. Specifically, both κ and λ are related to dN and 
so any bias or error in the observed dN trend would bias κ and λ in opposite directions. Moreover ρ = dF/dT 
would be unaffected by any bias or error in dN, and so the anticorrelation would compensate to leave ρ = κ − λ 
unaffected. We illustrate this in Table 4, which shows these quantities calculated over 1985–2014 using five 
available different versions of the DEEP-C dN data sets (see Section 2.4). Differences in the results emerge (λ 
reduces in magnitude from ∼−2.2 to ∼−2.0 Wm −2 K −1, with a compensating increase in κ) as the DEEP-C data 
sets transition from v3 to v4 (i.e., v2 and v3 give the same results, as do v4 and v5), highlighting the impact of 
potential structural errors in these results. We do not pursue the cause of the difference in the results, but it is 
likely due to changes between v3 and v4 in how the DEEP-C method bridges the gap between satellite products 
in the 1990s (a longer adjustment period and a different modeling ensemble is used) (Liu et al., 2020). However, 
it is also important to note that the observational record since 2000, applying the CERES data set, is subject to 
much smaller structural uncertainty than the earlier record implying a greater confidence in our analysis of the 
anomalous N variations post 2014.

4.3. Effect of the Pinatubo Volcanic Eruption

Finally, we comment on the effect of the Pinatubo volcanic eruption on these results. There is a large negative 
spike in dF and dN around 1991 and 1992 (Figure 7b). While we found no impact of these years on our estimate 
of 1985–2014 λhist, they have a strong impact on ρ and κ. Including these years in the regression analysis, we find 
ρ = dF/dT ∼ 2.9 ± 0.7 W m −2 K −1 and κ = dN/dT ∼ 0.8 ± 0.9 W m −2 K −1, much larger than when these years 
are excluded from the analysis as above. This is consistent with Gregory et al. (2015) who found the “transient 
climate response parameter” (equal to 1/ρ, units K W −1 m 2) to explosive eruptions to be smaller (ρ larger) than 
that evaluated in AOGCMs under steadily increasing CO2, principally because the surface/mixed-layer readily 
gives up heat (κ larger) in response to a short-lived forcing like an explosive volcanic eruption. Hence, if the 
time-period under consideration contains large volcanic eruptions then the “zero-layer” model (dF = ρ dT) is 
found to be a poor approximation (i.e., ρ not constant) over the entire time-period because it neglects the impor-
tance of the upper-ocean heat capacity on short timescales (Gregory & Forster, 2008; Gregory et al., 2015; Held 
et al., 2010). This manifests itself as a sensitivity of ρ and κ to the inclusion or exclusion of volcanic years, as we 
have found here.
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5. Summary, Discussion, and Conclusions
5.1. Historical Feedbacks and the Pattern Effect

The dependence of radiative feedback on the pattern of SST change was investigated in 14 Atmospheric General 
Circulation Models (AGCMs) forced with observed variations in sea-surface-temperature (SST) and sea-ice 
over the historical record from 1871 to near-present (amip-piForcing experiment). We found that the pattern 
effect identified in a previous model intercomparison (Andrews et al., 2018) is largely robust to a wider set of 
new generation AGCMs with a broader range of atmospheric physics and climate sensitivities. Our qualitative 
conclusions were not strongly dependent on the AMIP II SST data set used to force the AGCMs; indeed, the 
feedbacks in nine AGCMs using SSTs from HadISST1 (hadSST-piForcing) were found to be strongly correlated 
with feedbacks in amip-piForcing, though the magnitude of the pattern effect post 1980 was found to be smaller 
under HadISST1 SSTs (see also Andrews et al., 2018; Fueglistaler & Silvers, 2021; Lewis & Mauritsen, 2021; 
Zhou et al., 2021).

Separating the historical record at 1980, we found that over 1871–1980 the Earth warmed with a relatively 
uniform warming pattern and feedbacks largely consistent and strongly correlated with long-term abrupt-4xCO2 
feedbacks (i.e., with relatively small pattern effect—Figures 2 and 5). In contrast, post 1980 the Earth warmed 
with a strong tropical Pacific SST gradient (Figure 4) where regions of deep convection warm substantially more 
than the tropical mean (Fueglistaler & Silvers, 2021). This drove large negative feedbacks and pattern effects 
in both our amip-piForcing and hadSST-piForcing simulations, consistent with the physical understanding of 
how lapse-rate and cloud feedbacks depend on tropical Pacific SST patterns (Andrews & Webb, 2018; Ceppi & 
Gregory, 2017; Dong et al., 2019; Zhou et al., 2016).

As well as a large pattern effect, feedbacks post 1980 were found to be uncorrelated with long-term CO2 driven 
feedbacks (Figure  5). This is unfortunate, because the feedback inferred from this period therefore does not 
constrain the CO2 feedback or ECS. It is also surprising, because the period since ∼1980 contains a well observed 
large global temperature response, which AOGCMs attribute to increasing greenhouse gases, and it avoids the 
aerosol forcing uncertainty issue which is small in energy budget estimates of ECS over this period (at least in the 
global-mean; regional aerosol forcing could still impact on SST patterns and feedbacks) (Jiménez-de-la-Cuesta 
& Mauritsen, 2019). Despite this, it turns out to be the worst period for inferring the Earth's long-term CO2 
climate sensitivity from the observed global energy balance. Conversely, feedbacks acting earlier in the record 
(1871–1980) are representative of the long-term response (i.e., smaller pattern effect) and do correlate with λ4xCO2 
across models, yet this period has a smaller climate change signal and is not as well observed, containing much 
larger uncertainties relative to the climate change signal (e.g., Otto et al., 2013), as well as a large forcing uncer-
tainty. Hence, the usefulness of this time-period is limited for setting a constraint on λhist.

Considering the historical record as a whole is useful for informing studies that use the entire observed record to 
estimate ECS via energy budget constraints (e.g., Sherwood et al., 2020). We found that the pattern effect over 
1871–2010 to be Δλ = 0.70 ± 0.47 W m −2 K −1 in our amip-piForcing ensemble and Δλ = 0.48 ± 0.36 W m −2 K −1 
in hadSST-piForcing, where the smaller uncertainty in hadSST-piForcing likely reflects the narrower set of model 
physics in this smaller ensemble (e.g., we do not have hadSST-piForcing experiments for the model (MIROC6) 
with the smallest pattern effect in amip-piForcing). The question therefore arises as to which of these estimates 
ought to be used for adjusting historical energy budget constraints on ECS for pattern effects.

Both Lewis and Mauritsen (2021) and Fueglistaler and Silvers (2021) showed that the AMIP II data set had the 
largest warm pool trends relative to the tropical-mean of all SST reconstructions they considered. Hence, one 
interpretation of our results is that the pattern effect in amip-piForcing might usefully be regarded as an upper 
bound on the structural uncertainty of the experimental design to observational uncertainty in SST reconstruc-
tions. A best estimate might place more weight on the hadSST-piForcing pattern effects, which have warm pool 
trends (relative to the tropical-mean) closer to the middle of the range of SST reconstructions (Fueglistaler & 
Silvers, 2021; Lewis & Mauritsen, 2021). In that case, a best estimate of the historical pattern effect could be 
0.48 ± 0.47 W m −2 K −1 for the time-period 1871–2010, which represents the pattern effect from hadSST-piForcing 
but retaining the larger uncertainty from the (larger ensemble) amip-piForcing results. If calculated over 
1871–2014 the pattern effect increases by 0.05 ± 0.05 W m −2 K −1 according to the hadSST-piForcing ensemble. 
This best estimate of the historical pattern effect is close to that used in Sherwood et al. (2020), who assumed a 
value of 0.5 ± 0.5 W m −2 K −1 (they were informed by Andrews et al. (2018) who used amip-piForcing but allowed 
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for a potentially smaller pattern effect than that study based on expert judgment). On the other hand, just because 
the AMIP II SST trends are at one end of the range of SST reconstructions does not necessarily mean they are 
more erroneous. Indeed, Zhou et al. (2021) showed that TOA radiative fluxes simulated by CAM5.3 correlated 
better with CERES observations when forced with AMIP II SSTs rather than HadISST SSTs, suggesting the 
results from amip-piForcing may be more reliable. In this case, the 1871–2010 pattern effect is 0.70 ± 0.47 W 
m −2 K −1. In the future, a model intercomparison of the pattern effect to a broader range of SST reconstructions 
would be useful to address any outstanding structural uncertainty to SST reconstructions.

To provide independent evidence for the historical pattern effect, we used IPCC AR6 assessed changes in T, N, 
and F between 1850–1900 and 2006–2019 (Forster et al., 2021) to estimate a historical feedback parameter of 
λhist = (ΔN – ΔF)/ΔT = −1.6 ± 0.8 W m −2 K −1. This was found to be in agreement with the amip-piForcing 
and hadSST-piForcing ensembles. IPCC AR6 also assessed the long-term ECS relevant feedback parameter 
(−1.16 ± 0.65 W m −2 K −1, Forster et al., 2021) from combining lines of evidence from observations, theory, 
process models, and GCMs on individual climate feedback processes. Contrasting this with the λhist estimate 
above gives an estimate of the pattern effect of 0.4 ± 1.1 W m −2 K −1 for historical changes between 1850–1900 
and 2006–2019. While the uncertainties are substantial, this is in agreement with our GCM based estimate of the 
historical pattern effect.

5.2. Observed Climate Change Since 1985 and Ocean Heat Uptake Efficiency

Satellite based reconstructions of the Earth's energy balance over 1985 to 2014 suggest a feedback parameter of 
∼−2.0 ± 0.7 W m −2 K −1, in agreement with our amip-piForcing and hadSST-piForcing ensembles. Evidence is 
also emerging from satellite records in support of the physical processes and mechanisms of the pattern effect 
between surface temperature, atmospheric stability, cloudiness, and radiative fluxes over recent decades (e.g., 
Ceppi & Fueglistaler,  2021; Ceppi & Gregory,  2017; Fueglistaler & Silvers,  2021; Loeb et  al.,  2020; Zhou 
et al., 2016).

Extending our analysis post 2014 included the major El-Nino event of 2015/2016 that was associated with 
eastern-pacific warming and marked changes in the observed radiation budget (Loeb et al., 2020, 2021). Includ-
ing these post 2014 years (up to and including 2019) reduced the magnitude of the observed λ estimate by up 
to ∼25%, consistent with eastern Pacific warming driving more positive feedbacks (as also suggested in Loeb 
et al., 2020). This suggests the pattern effect that has existed over recent decades may be waning if a shift from 
western to eastern Pacific warming is maintained in the longer term, as might be expected from a change in the 
PDO index identified by Loeb et al. (2021).

Given the substantial rate of global warming since 1985, what does the presence of a large pattern effect imply 
for ocean heat uptake efficiency (κ)? We estimated κ = dN/dT ∼ 0.4 ± 0.8 W m −2 K −1 over 1985–2014, which is 
smaller (but not necessarily inconsistent) with AOGCM simulations of steady increasing CO2 (κ = 0.73 ± 0.18 W 
m −2 K −1 for years 61–80 of CMIP5 1%CO2 AOGCM simulations, Gregory et al., 2015). It raises the possibility 
that the pattern of surface warming and/or atmospheric circulation may also change the efficiency of global heat 
uptake, thus both λ and κ might vary and to some extent be related (Newsom et al., 2020). If an anticorrelation 
existed, it could buffer the impact of a large pattern-effect on transient climate change.

We found that despite the change in radiative feedback post 2014 when the eastern Pacific warmed, the climate 
resistance ρ = dF/dT = κ − λ remained approximately constant, suggesting that κ and λ covaried. We showed 
that this result is potential evidence for a change in ocean heat content not driven by global T. While this result is 
suggestive, the extent of this compensation and timescales it applies to remains unclear. It may simply apply to 
short-term variability and clearly does not apply to longer term forced changes (e.g., Gregory et al., 2015). Future 
research investigating how ocean uptake and atmospheric radiative feedbacks are linked through patterns of SST 
change would be useful.

5.3. Outlook and Implications for AOGCMs

Our results raise important questions for studies that have used emergent relationships from AOGCMs to constrain 
ECS from recently observed decadal warming since ∼1980 (e.g., Jiménez-de-la-Cuesta & Mauritsen,  2019; 
Nijsse et al., 2020; Tokarska et al., 2020).
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First, how is it possible that AOGCMs produce an emergent relationship between their recent decadal warming 
trends and their ECS, while our results suggest that recent decadal feedbacks ought to be unrelated to ECS? One 
solution to this conundrum is provided by Fueglistaler and Silvers (2021), who showed that AOGCMs typically 
do not simulate the recent configuration of tropical Pacific SST patterns that gave rise to the recent pattern effect 
(though some models do have broad agreements, e.g., Olonscheck et al., 2020; Watanabe et al., 2021). Instead, 
the pattern of warming in AOGCMs (and thus feedbacks) over recent decades is more similar to that seen in 
their abrupt-4xCO2 simulations (Dong et al., 2021; Gregory et al., 2020). Hence, AOGCMs are generally biased 
in their simulation of the recent decadal feedbacks and the pattern effect, compared to their equivalent AGCMs 
forced with observed SST variations, as shown in Gregory et al. (2020) and Dong et al. (2021).

If AOGCMs are biased in their simulation of recent decadal feedbacks and the pattern effect, it suggests they may 
be biased toward simulating recent decadal temperature trends that are too high; in turn, this would bias emergent 
constraints that use them toward values of ECS that are too low. Alternatively, those models that do match the 
observed warming trend may do so via a compensation of processes: too small a pattern effect balanced against too 
large a heat uptake into the deep-ocean. Some evidence for the potential of this compensating behavior is provided 
by Hedemann et al. (2017). Analyzing the origins of decadal temperature variability in models, they demonstrated 
an anticorrelation between the TOA radiative flux and deep-ocean (defined as below 100 m) flux contributions 
to the model's surface layer and decadal temperature trends (see their Figure 3). In other words, when the TOA 
radiative flux is in such a configuration to reduce its contribution to the surface layer, then the surface/mixed-layer 
taps into the deep-ocean to compensate for this loss, and vice versa. We speculate that such a configuration of TOA 
radiative flux is potentially consistent with a large negative feedback, since in this configuration of atmospheric 
feedbacks the surface efficiently radiates heat back to space. This again suggests a potential anticorrelation between 
the ocean heat uptake efficiency and λ during unforced decadal variability timescales as discussed previously.

Going forward, a critical question for future research is to understand what caused the particular configuration of 
SST patterns over recent decades (e.g., strong warming in the western Pacific while cooling in the eastern Pacific 
and Southern Ocean, despite temperature increasing in the global-mean; Figures 4 and 9), and how might this 
pattern evolve in the future. For example, various hypotheses have been put forward:

1.  It could represent a mode of unforced coupled atmosphere-ocean variability (e.g., Watanabe et al., 2021; Xie 
et al., 2016), albeit an unusual one is that it is rarely simulated by AOGCMs (Fueglistaler & Silvers, 2021). In 
this scenario, we might expect the pattern effect to reduce in the near-future as the configuration of tropical 
SST patterns shift to more warming in the east than the west. There is some evidence (Loeb et al., 2020, 2021) 
this has already begun to happen in the most recent years, as we have also shown. We might therefore expect 
an acceleration of warming trends, unless the additional heat at the surface from the reduced pattern effect is 
tempered by compensating heat exchanges with the deep-ocean (Hedemann et al., 2017).

2.  Spatiotemporal variations in anthropogenic forcings such as aerosols (e.g., Heede & Fedorov, 2021; Moseid 
et al., 2020; D. M. Smith et al., 2015; Takahashi & Watanabe, 2016) or explosive volcanic eruptions (Gregory 
et al., 2020; D. M. Smith et al., 2015) have been implicated in driving tropical Pacific SST patterns. In these 
scenarios, the pattern effect may decline with the reduction in aerosol emissions in the future, or continue 
to have decadal variations associated with future volcanism. Whether changes in deep-ocean fluxes will be 
accompanied with such forced changes in the pattern effect is unclear.

3.  While not explaining the eastern Pacific cooling per se, a delayed warming in the eastern Pacific relative to 
the west is an expected transient response to forcing due to the upwelling of (as yet) unperturbed waters from 
below (Clement et al., 1996; Heede & Fedorov, 2021; Held et al., 2010). The implication of this is that even-
tually the eastern Pacific will warm, and hence we might expect the pattern effect to reduce and the Earth to 
warm with stronger (positive) cloud feedbacks (e.g., Dessler, 2020).

4.  In contrast, AOGCMs may overstate the expected warming in the eastern Pacific (e.g., Seager et al., 2019). 
Under this scenario, we might expect the pattern effect to reduce after the eastern Pacific stops cooling, but 
the full pattern effect according to AOGCMs may never materialize if they incorrectly simulate a strong 
“ENSO-like” pattern in their long-term response to CO2. However, a lack of eastern Pacific warming in the 
long-term seems unlikely according to paleoclimate records (Tierney et al., 2019, 2020).

5.  Teleconnections from either the Atlantic Ocean (McGregor et  al.,  2018) or Southern Ocean (Hwang 
et al., 2017) have potentially driven the tropical Pacific SST patterns. Under the scenario of an Atlantic influ-
ence, we might expect the pattern effect to reduce as Atlantic SST trends evolve over the next few decades. 
Under the scenario of a Southern Ocean influence, we might expect the pattern effect to reduce as the South-
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ern Ocean surface warms; this could take years to decades if the Southern Ocean temperature trends have been 
largely mediated by internal variability (e.g., Zhang et al., 2019) but could take centuries or longer if Southern 
Ocean cooling continues due, for instance, to freshwater input from ongoing Antarctic ice shelf melt (e.g., 
Sadai et al., 2020).

These are merely some of the proposed hypotheses, and not meant to be an exhaustive list. But whatever the 
reason, the fact that AOGCMs rarely simulate this pattern (e.g., Dong et al., 2021; Fueglistaler & Silvers, 2021; 
Watanabe et al., 2021) is a concern, suggesting either that their unforced decadal variability is deficient, or that 
their forced response is biased, and in either case there is a serious systematic error which affects all AOGCMs. 
Moreover, each of the above interpretations imply different futures, and therefore untangling them is critical 
for informing both near-term and long-term climate projections. This is time critical because satellite evidence 
suggests the Pacific SST pattern that has dominated recent decades is currently shifting (Loeb et  al.,  2020) 
and indeed the Earth's energy balance is rapidly changing with it (Loeb et al., 2021; Raghuraman et al., 2021). 
Predicting the near future therefore depends on maintaining the continuity of the satellite record and untangling 
the above mechanisms.

Data Availability Statement
Global-annual-ensemble-mean dT and dN data from all amip-piForcing, hadSST-piForcing, and abrupt-4xCO2 
simulations used in this study are provided at https://doi.org/10.5281/zenodo.6799004 (Andrews et al., 2022). 
Raw data from CMIP6 amip-piForcing simulations (indicated in Table 1) are available at https://pcmdi.llnl.gov/
CMIP6/ (Eyring et al., 2016). abrupt-4xCO2 raw data for most models is available at CMIP5 (https://esgf-node.
llnl.gov/projects/cmip5/) (Taylor et al., 2012) or CMIP6 (https://pcmdi.llnl.gov/CMIP6/) (Eyring et al., 2016). 
The HadCRUT5 analysis data set is available at https://www.metoffice.gov.uk/hadobs/hadcrut5/ (Morice 
et  al.,  2021). IPCC AR6 ERF time series is available at https://doi.org/10.5281/zenodo.5211358 (C. Smith 
et al., 2021). DEEP-C v5 dN radiative fluxes can be obtained from https://doi.org/10.17864/1947.000347 (Liu 
& Allan, 2022) and previous versions described at http://www.met.reading.ac.uk/∼sgs02rpa/research/DEEP-C/
GRL/. The HadISST1 SSTs used to force the hadSST-piForcing simulations are available at https://www.metof-
fice.gov.uk/hadobs/hadisst/ (Rayner et al., 2003).
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